
Learning Bit Allocations for Z-Order Layouts in
Analytic Data Systems

Jenny Gao
Massachusetts Institute of Technology

jgao86@mit.edu

Jialin Ding∗
Amazon Web Services
jialind@amazon.com

Sivaprasad Sudhir
Massachusetts Institute of Technology

siva@csail.mit.edu

Samuel Madden
Massachusetts Institute of Technology

madden@csail.mit.edu

Abstract

To improve the performance of scanning and filtering, modern analytic data systems
such as Amazon Redshift and Databricks Delta Lake give users the ability to sort
a table using a Z-order, which maps each row to a "Z-value" by interleaving the
binary representations of the row’s attributes, then sorts rows by their Z-values.
These Z-order layouts essentially sort the table by multiple columns simultaneously
and can achieve superior performance to single-column sort orders when the user’s
queries filter over multiple columns. However, the Z-orders currently used by
modern systems treat all columns as equally important, which often does not result
in the best performance due to the unequal impact that different columns have on
query performance. In this work, we investigate the performance impact of using
Z-orders that place unequal importance on columns: instead of using an equal
number of bits from each column in the Z-value interleaving, we allow unequal
bit allocation. We introduce a technique that automatically learns the best bit
allocation for a Z-order layout on a given dataset and query workload. Z-order
layouts using our learned bit allocations outperform traditional Z-order layouts by
up to 1.6× in query runtime and up to 2× in rows scanned.

1 Introduction

Scanning and filtering data is an important operation in analytical databases. To improve scan
performance, analytic databases often horizontally partition tables into blocks and maintain a zone
map for each block, which contains metadata such as minimum/maximum values per column [1, 2, 6].
When performing scans, the database engine first checks each zone map to determine if any relevant
records might exist in the block and only scans the blocks that are relevant to a query.

To increase the likelihood that blocks can be skipped, users typically sort their tables by a column
that is commonly used in filters. For cases in which a table is commonly filtered by multiple different
columns, some analytic databases support multi-column sort orders. One commonly used sort order
technique involves a multi-dimensional space-filling curve called the Z-order [8], which maps multi-
dimensional data to scalar “Z-values” while preserving the locality of the data points: points that were
close together in the multi-dimensional space would still be close to each other on a one-dimensional
line after sorting by their mapped Z-values. The Z-value for a record is calculated by interleaving the
bits of the binary representation of the column values in a round-robin fashion. For example, Fig. 1a
shows how a record with two three-bit columns is mapped to a four-bit Z-value by interleaving the
first two bits from each column value.

∗Work done prior to joining Amazon.

Machine Learning for Systems Workshop at 37th NeurIPS Conference, 2023, New Orleans, LA, USA.



y 0 1 2 3 4 5 6 7

x 000 001 010 011 100 101 110 111

0 000 0000 0000 0001 0001 0100 0100 0101 0101

1 001 0000 0000 0001 0001 0100 0100 0101 0101

2 010 0010 0010 0011 0011 0110 0110 0111 0111

3 011 0010 0010 0011 0011 0110 0110 0111 0111

4 100 1000 1000 1001 1001 1100 1100 1101 1101

5 101 1000 1000 1001 1001 1100 1100 1101 1101

6 110 1010 1010 1011 1011 1110 1110 1111 1111

7 111 1010 1010 1011 1011 1110 1110 1111 1111

(a) A Z-order configuration with equal bit allocation (2
bits each from columns x and y) in four blocks being
scanned.

y 0 1 2 3 4 5 6 7

x 000 001 010 011 100 101 110 111

0 000 0000 0000 0000 0000 0001 0001 0001 0001

1 001 0010 0010 0010 0010 0011 0011 0011 0011

2 010 0100 0100 0100 0100 0101 0101 0101 0101

3 011 0110 0110 0110 0110 0111 0111 0111 0111

4 100 1000 1000 1000 1000 1001 1001 1001 1001

5 101 1010 1010 1010 1010 1011 1011 1011 1011

6 110 1100 1100 1100 1100 1101 1101 1101 1101

7 111 1110 1110 1110 1110 1111 1111 1111 1111

(b) A Z-order configuration with unequal bit allocation
(3 bits from column x and 1 bit from column y) results
in two blocks being scanned.

Figure 1: Example of two possible Z-order data layouts on a table with two integer columns, x
and y, each with domain between 0 and 7. The table contains 64 unique records, each of which is
visualized as an (x, y) point on a two-dimensional plane, and each block contains 4 records. If a
query needs to find all points that satisfy the filter (x ≥ 1 AND x ≤ 2 AND y ≥ 0 AND y ≤ 3)
(bold dotted-black rectangle), a Z-order configuration with an uneven bit allocation (b) results in
fewer blocks (highlighted in red) scanned than one with an equal bit allocation (a).

However, the Z-order sort methods supported by existing systems like Amazon Redshift [2] and
Databricks Delta Lake [5] give equal weight to the columns, in the sense that a roughly equal number
of bits from each column are included in the Z-order value due to the round-robin nature of bit
interleaving. Such an approach might not result in the best performance since different columns
impact query performance differently.

Therefore, we consider Z-order layouts in which unequal weight is placed on different columns.
Fig. 1 shows an example where allocating an unequal number of bits to each column results in better
performance than equal bit allocation: the filter over column x is more selective than the filter over
column y, so sorting by column x is more impactful than sorting by column y, and the Z-order bit
allocation should reflect their relative importance.

We propose an approach to automatically learn the best unequal-bit Z-order configuration for a given
dataset and query workload.

2 Learning Z-Order Bit Allocations

2.1 Problem Statement

We begin with some definitions:

Definition 1 (Z-Order configuration) We define a Z-order configuration to be an allocation of bits
to columns. Given columns col0 to coln−1, a Z-order configuration can be written as a set of key-value
pairs: {col0: v0, col1: v1, ..., coln−1: vn−1}, where vi denotes the number of bits from coli to use in
the Z-order bit interleaving. Placing more weight on a column is equivalent to having a higher vi
value for a column.

Definition 2 (Z-value under a configuration) Given a Z-order configuration {col0: v0, col1: v1,
..., coln−1: vn−1}, the Z-value under this configuration for a given record (c0, c1, . . . , cn−1) can be
constructed by evaluating m = min(v0, v1, . . . , vn−1) and interleaving ⌊vi/m⌋ bits of each column

2



at a time in a round-robin fashion (if there are fewer than ⌊vi/m⌋ bits remaining in the allocation,
we use all remaining allocated bits).

Typically, systems place an upper limit on the total number of bits in a Z-value. A common limit is
64 bits, so Z-values can be represented as 8-byte integers, which can be sorted efficiently. For the
remainder of this abstract, we assume 64-bit Z-values, though our techniques generalize to other bit
limits.

Given a table with n columns (i.e., a dataset) and a query workload in which each query is a filter
over the dataset followed by a projection over a subset of columns, the goal is to find the Z-order
configuration (i.e., the allocation of 64 bits to n columns) that minimizes the total runtime of all
queries in the workload.

2.2 Approach

There are two parts to our approach to tackling the problem statement. First, we need a search
algorithm to search the space of possible configurations. We use Bayesian optimization as our
search algorithm. Second, the true objective function that we want to minimize as part of Bayesian
optimization (total query runtime) is too expensive to evaluate since it would require running all the
queries, so we need a proxy objective function that is cheaper to evaluate. We use an analytic cost
model as our proxy objective function. We now describe these two parts in more detail.

Cost Model. Our cost model takes a candidate configuration as input and produces an estimated
runtime of a query proportional to the amount of scanned data. The cost model that we use for a
single query is:

Query Time = (num rows scanned) ∗ (num filtered columns)

The number of filtered columns is clear from the query itself. Instead of computing the exact number
of rows scanned, which would require sorting the full dataset by the candidate configuration, we
estimate the number of rows scanned by only sorting and creating zone maps over a sample of the
dataset.

Search Algorithm. To search the space of possible configurations, we use Bayesian optimiza-
tion [3], which is a derivative-free global optimization method for black-box objective functions. We
chose Bayesian optimization because it is well-suited to expensive-to-evaluate objective functions as
well as objective functions with stochastic noise and uncertainty, both of which are true for our cost
model.

We formulate our Bayesian optimization search space as follows: for a given dataset and query
workload, we first identify the columns that appeared in filters in the query workload (we do not
consider any other columns since allocating bits to them would not improve the performance of
scanning and filtering). If there are n such columns, then we create an n-dimensional search space,
where each dimension has a continuous domain between 0 and 1, which represents the relative
number of bits allocated to each corresponding column.

Given a sampled point (p0, p1, . . . , pn−1) from the search space, we construct a candidate mapping
that represents a 64-bit Z-order configuration, in which the number of bits allocated to coli is(
64 · pi∑n−1

j=0 pj

)
. The candidate mapping is then inputted to the objective function.

3 Evaluation and Next Steps

We evaluate the performance of our learned Z-order bit allocation approach against three alternative
sorting methods: (1) Default sort order: queries are performed on the original dataset, without any
explicit sort order. (2) Range partitioning: the dataset is sorted on the column with the lowest average
filter selectivity. (3) Equal-weight Z-order: we distribute 64 bits, allocating an equal number of bits
to the three most frequently occurring columns in the query workload, resembling what is possible in
today’s systems [2, 5].

We evaluate indexes on four real-world datasets collected from [4]: contributions, flights, taxi,
and tweets. The query workload for each dataset consists of around 500 queries, each with a filter

3



Table 1: Evaluation results on four datasets. we compare Default sort order, Range partitioning,
Equal-weight Z-order over three columns, and Ours (Z-order with learned bit allocation), in terms of
average rows scanned per query and end-to-end workload execution time.

Data Traits Rows Scanned Workload Execution Time (s)

Rows Cols Default Range Equal Ours Default Range Equal Ours

Contrib. 86M 9 77.3M 7.41M 8.32M 5.97M 654 99.4 95.3 52.9
Flights 120M 21 8.45M 10.4M 7.88M 4.02M 71.9 77.3 63.7 46.2
Taxi 175M 13 77.2M 57.9M 11.8M 6.45M 813 524 171 108
Tweets 15M 16 10.7M 364K 1.67M 349K 78 7.1 10 6.6

selectivity of 1% or less. Query execution involves scanning and filtering, projection over the columns
that appear in the query, and materialization of the output tuples.

For all methods, the data is stored in Parquet format [9] and partitioned into 4MB rowgroups (i.e.,
blocks). Parquet natively uses zone maps to skip blocks. For Bayesian optimization, we use the
Python package [7]. For each dataset and workload, we run Bayesian optimization for 600 iterations
to find the best Z-order configuration. All the experiments are single-threaded and run on an Arch
Linux machine with an Intel Xeon 2.1GHz CPU and 125GB RAM.

Results. Table 1 shows the average number of rows scanned for each sort order on each dataset.
We observe that our learned Z-order configurations achieve high performance on all the datasets: they
result in fewer or comparable average number of rows scanned compared to every other layout. On
three of the datasets, the Z-order configuration produced by our approach achieves between 1.2× and
2× reduction in the number of rows scanned compared to the next-best layout.

Table 1 also shows the overall workload execution time for each sort order on each dataset. The trends
for query runtime are similar to those for the average number of rows scanned, with our learned
Z-order configurations achieving up to 1.6× faster runtimes. Improvements in query time are not
as dramatic as improvements in rows scanned because query execution involves performing other
operations after scanning the rowgroups, such as materializing the output tuples.

Discussion. In general, Z-order layouts are most effective for workloads where most of the queries
filter over a relatively small number of columns. For workloads in which queries filter primarily over
one column, range partitioning performs as well as Z-order. For workloads in which queries filter
over a large number of columns, we can only allocate a few bits to each column, which may not be
enough to allow for effective data skipping.

For example, Z-order performs particularly well for the Flights dataset, in which the learned Z-order
configuration allocated bits to five total columns, and the queries in the Flights workload each
filter over two to four of the columns among the five columns used in the Z-order. The Z-order
configuration for the Taxi dataset displays similar behavior.

In contrast, the Contributions workload consists of many queries that filter over four or more columns.
Based on analysis of the rows scanned for each query, we observed that queries with four or more
columns contributed to the greatest increase in query runtime and rows scanned.

Meanwhile, most of the queries in the Tweets workload filter over a total of ten different columns,
but one column clearly appears most frequently in filters and is the most selective. This makes
Z-order doubly ineffective: first, it cannot allocate an adequate number of bits to all ten columns.
Secondly, since there is one dominant column in filters, a range partitioning over that column achieves
performance that is nearly as good as Z-order.

Next Steps. Z-order data layouts are a rich area for future work. One open question is how to select
the order in which the bits from different columns are interleaved to form the Z-value; ordering matters
because bits in more significant positions have a larger impact on sort order than less significant bits.
Another open question is how to handle dynamic datasets, where changes in the data distribution may
cause the optimal bit allocation to also change. In order to maintain high performance, we would
either need to switch to a new Z-order configuration, anticipate the data distribution evolution during
the initial Z-order optimization, or a combination of both.

4



References
[1] Nigel Bayliss. Optimizing Table Scans with Zone Maps. https://blogs.oracle.com/

datawarehousing/post/optimizing-table-scans-with-zone-maps, 2014.

[2] Zach Christopherson. Amazon Redshift Engineering’s Advanced Table Design Playbook:
Compound and Interleaved Sort Keys. https://aws.amazon.com/blogs/big-data/
amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/,
2016.

[3] Peter I. Frazier. A Tutorial on Bayesian Optimization, 2018. URL https://arxiv.org/abs/1807.
02811.

[4] HEAVY.AI. Omnisci. https://www.omnisci.com/, 2023.

[5] Adrian Ionescu. Processing Petabytes of Data in Seconds with
Databricks Delta. https://databricks.com/blog/2018/07/31/
processing-petabytes-of-data-in-seconds-with-databricks-delta.html, 2018.

[6] Guido Moerkotte. Small materialized aggregates: A light weight index structure for data warehousing. In
Proceedings of the 24rd International Conference on Very Large Data Bases, VLDB ’98, page 476–487,
San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc. ISBN 1558605665.

[7] Fernando Nogueira. Bayesian Optimization: Open source constrained global optimization tool for Python.
https://github.com/fmfn/BayesianOptimization, 2014–.

[8] Hans Sagan. Space-filling curves. Springer Science & Business Media, 2012.

[9] The Apache Software Foundation. Apache parquet. https://parquet.apache.org/, 2023.

5

https://blogs.oracle.com/datawarehousing/post/optimizing-table-scans-with-zone-maps
https://blogs.oracle.com/datawarehousing/post/optimizing-table-scans-with-zone-maps
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
https://www.omnisci.com/
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://github.com/fmfn/BayesianOptimization
https://parquet.apache.org/

	Introduction
	Learning Z-Order Bit Allocations
	Problem Statement
	Approach

	Evaluation and Next Steps

