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Abstract

Contextual bandits with average-case statistical guarantees are inadequate in risk-
averse situations because they might trade off degraded worst-case behaviour
for better average performance. Designing a risk-averse contextual bandit is
challenging because exploration is necessary but risk-aversion is sensitive to the
entire distribution of rewards; nonetheless we exhibit the first risk-averse contextual
bandit algorithm with an online regret guarantee. We apply the technique to a
self-tuning software scenario in a production exascale data processing system,
where worst-case outcomes should be avoided.

1 Introduction

Contextual bandits [Auer et al., 2002, Langford and Zhang, 2007] are a mature technology with
numerous applications: however, adoption has been most aggressive in recommendation scenar-
ios [Bouneffouf and Rish, 2019], where the worst-case outcome is user annoyance. At the other
extreme are medical and defense scenarios where worst-case outcomes are literally fatal. In between
are scenarios of interest where bad outcomes are tolerable but should be avoided, e.g., logistics; fi-
nance; and self-tuning software, where the term tail catastrophe highlights the inadequacy of average
case performance guarantees in real-world applications [Marcus et al., 2021]. These scenarios de-
mand risk-aversion, i.e., decisions should sacrifice average performance in order to avoid worst-case
outcomes, and incorporating risk-aversion into contextual bandits would facilitate adoption.

This paper solves risk-averse decision making for contextual bandits via reduction to regression,
resulting in the first risk-averse contextual bandit algorithm with an online regret guarantee. The
regret guarantee applies over adversarially chosen context sequences and includes the exploration
choices made by the algorithm. The approach utilizes arbitrary (online learnable) function classes to
estimate a risk measure and introduces no computational overhead relative to the risk-neutral setting;
introduces statistical overhead directly related to the desired level of risk-aversion, with no overhead
in the risk-neutral limit; and composes with other innovations within the Decision-to-Estimation
framework [Foster et al., 2021], e.g., linear representability [Zhu and Mineiro, 2022]. We apply the
technique to a self-tuning software scenario in a production exascale data processing system [Zhang
et al., 2022], where worst-case outcomes (e.g., performance regressions) should be avoided.

Related Work Prior work on risk-averse contextual bandits is limited. Sun et al. [2017] address the
adversarial contextual setting by treating total risk as a constraint, but requires an additional risk value
observed along with cost. Bouneffouf [2016] presents a contextual UCB algorithm which optimizes
for mean reward, but which modulates the level of ϵ-greedy exploration based upon a risk estimate.
Concurrent to our work, Saux and Maillard [2023] recently also use the UCB framework solving a
convex problem under the assumption of linear bandits, which do not apply to any of our non-linear
predictors in the experiments. Huang et al. [2021] study the finite sample behaviour of off-policy
estimation for a broad class of risk measures.
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The inadequacy of average-case guarantees is a recurring theme in real-time systems applications.
Jalaparti et al. [2013] improve tail latencies of request-response workflows by minimizing variance.
Schad et al. [2010] use the same performance measure in cloud computing. CVaR optimization
is also present in systems applications: Mena et al. [2014] propose a multi-objective optimization
technique with CVaR as risk metric in a sizing and allocation problem of renewable generation,
whereas Moreno and Strbac [2015] limit risk exposure to high impact low probability events in
distribution substations through this metric. However, only a small number of related bandit studies
tackle risk-aware optimization in systems applications. Marcus et al. [2021] present a bandit optimizer
to improve the tail latency of queries. Sachidananda and Sivaraman [2021] design an autoscaler using
a multi-armed bandit algorithm to optimize median or tail latency for microservice applications.

2 Problem Statement

Traditional database query optimizers are built for general scenarios at all scales, and as a result they
often generate suboptimal query execution plans for a specific workload before finetuning by the
database administrators Leis et al. [2015]. To improve the query plan generated by the optimizer,
recent work has adopted a data-driven instance optimization approach that uses machine learning
algorithms to learn from the past workload and steer a query optimizer towards better query plan
choices. SCOPE [Power et al., 2021], the exascale cloud data processing system at Microsoft, has a
highly configurable query optimizer that uses a contextual bandit framework to select optimizer flags
on a per-query basis [Zhang et al., 2022]. Different optimizer flag leads to different query plan and
thus different performance and execution cost for an input query. For this application, although the
system has a set of default flag settings, there is no single optimal flag configuration working for all
input queries, and the best configuration depends on the specific query.

In earlier work Zhang et al. [2022], the objective of this steered query optimizer is mainly to increase
the overall average performance of queries, and thus risk-neutral contextual bandits were used in
SCOPE. While it is valuable to improve the average performance, it is important to also avoid
performance regressions (queries with worse performance than using the default configurations),
which lead to customer frustration and extra investigation work. At the scale of SCOPE, even if a
small percentage of regressions are introduced as a result of employing learned optimizer flags, the
number of customer incidents would easily overwhelm the product team. This observation motivates
a risk-averse approach as formulated below.

Contextual Bandits We describe the contextual bandit problem, which proceeds over T rounds.
At each round t ∈ [T ], the learner receives a context xt ∈ X (the context space), selects an action
at ∈ A (the action space), and then observes a loss lt(at), where lt : A → [0, 1] is the underlying
loss function. In the query optimization scenario, we assembled query information as context and
assessed the performance of multiple optimizer flag configurations (as actions) per query relative to a
default configuration, using the fractional change as the reward.

Reduction to Regression We attack the contextual bandit problem via reduction to regression,
working with a user-specified class of regression functions F ⊆ (X × A → [0, 1]) that aims to
estimate a risk measure ρ of the conditional loss distribution. We make the following realizability
assumption

∀a ∈ A, t ∈ [T ] : ∃f∗ ∈ F : f∗(xt, a) = ρ ((lt)a) ,

i.e., our function class includes a function which correctly estimates the value of the risk measure
arising from any action a in context xt. This constrains the adversary’s choices, as lt must be
consistent with realizability, but there are many random variables that achieve a particular risk value.

Regression Oracle We assume access to an online regression oracle AlgReg, which is an algorithm
for sequential predication under strongly convex losses using F as a benchmark class. More
specifically, the oracle operates in the following protocol: at each round t ∈ [T ], the algorithm
receives a context xt ∈ X , makes a prediction f̂t, where f̂t(xt, a) is interpreted as the prediction
for action a, and then observes an action at ∈ A and realized outcome lt(at) ∈ [0, 1]. Typically, its
performance is evaluated by the squared loss gt(f̂t) = (f̂t(xt, at) − lt(at))

2 when measuring the
estimation regret.
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Expectile Loss When optimizing for a risk-aware quantity, we can replace a loss that elicits the
mean with a loss that elicits the risk-aware quantity. The choice from the risk measures is limited,
and one suitable choice is EVaR. EVaR is less familiar to the machine learning community but is a
popular risk-measure in financial applications [Bellini and Di Bernardino, 2017], whose proponents
champion the superior finite-sample guarantees induced by strong convexity [Rossello, 2022]. Ziegel
[2016] shows the class of elicitable law-invariant coherent risk measures for real-valued random
variables is precisely Entropic Value at Risk (EVaRq) for q ∈

(
0, 1

2

]
, defined as

EVaRq(D) = arg min
v̂∈[0,1]

Ev∼D

[
(1− q)

(
(v − v̂)+

)2
+ q

(
(v̂ − v)+

)2]
, (1)

where (x)+ = max (x, 0). This asymmetrical strongly convex loss encourages overprediction
relative to the mean, implying infrequent large losses correspond to increased risk. A minimizer of
equation (1) is called an expectile. Certain technical qualifications are necessary for the minimum to
be achieved (bounded realization suffices). We refer to the elicitation loss function as expectile loss.

Expectiles can be elicited by asymmetric squared loss or log loss, and thus are a natural generalization
of the mean. This generalization is based on the choice of the q value leading to risk-averse (q < 0.5)
and standard risk-neutral (q = 0.5) settings.

3 Algorithm

By using the Estimation-to-Decision framework, we derive the resulting algorithm, which is the first
risk-averse contextual bandit with an online guarantee. It is the SquareCB algorithm [Foster and
Rakhlin, 2020] instantiated with an expectile loss regression oracle.

The oracle’s performance via the expectile loss is measured as the following:

gt(f̂t)
.
=

(
(1− q)

(
(v − v̂)+

)2
+ q

(
(v̂ − v)+

)2)∣∣∣
v=lt(at),v̂=f̂t(xt,at)

.

We assume AlgReg guarantees that for any (potentially adaptively chosen) sequence (xt, at, lt)
T
t=1,∑T

t=1

(
gt(f̂t)− gt(f

∗)
)
≤ RegEVaRq

(T ) for some (non-data-dependent) function RegEVaRq
(T ).

Algorithm 1 Finite Action Set

1: for t = 1, 2, . . . , T do
2: Receive context xt.
3: f̂t ← AlgReg. predict(xt).
4: ât ← argmina∈A f̂t,a.

5: Sample at ∼ AL(f̂t, ât) =


1

|A|+4θγ(f̂(a)−f̂(ât))
a ̸= ât

1−
∑

a̸=ât

1

|A|+4θγ(f̂(a)−f̂(ât))
a = ât

6: Play at and observe loss lt.
7: Call AlgReg. update(xt, at, lt).

Theorem 3.1. Algorithm 1 guarantees RegCB(T ) ≤ O
(

1
θ

√
|A|TRegEVaRq

(T )
)

, where θ =

min(q, 1− q).

Proofs and further details are in our full paper Farsang et al. [2022]. We emphasize that this regret
is with respect to the risk measure of the best action for each context, and includes the exploration
activity of the algorithm. The θ factor indicates the difficulty of competing with an extreme expectile.
The result is intuitive as θ is the strong convexity parameter of the expectile loss.

4 Results

We conducted experiments with the SCOPE query optimizer [Zhang et al., 2022] to demonstrate a
scenario where average-case guarantees are inadequate, and to exhibit a trade-off between maximizing
average-case and minimizing worst-case outcomes.
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Figure 1: Query Optimization results. Varying the learning expectile (q) yields different realized
lift and regression. Extreme expectiles are indicated in orange, the Pareto front is in green. With
moderate q, reductions in regression are proportionally larger than reductions in lift.

The dataset of this experiment was collected from the SCOPE query engine. For each query,
the dataset contains its feature embedding as well as the performance of multiple optimizer flag
configurations relative to the default configuration. The number of actions per example varies
depending upon constraints imposed by the optimizer: it ranges from 2 to 22, with a mean of 4.3
and a median of 3. We use this dataset to construct a query optimization simulator as follows: First,
the algorithm is presented the query information and the configuration choices; Then the algorithm
selects a configuration and receives the relative performance as the reward for that configuration.
The experiment is implemented with VowpalWabbit [Langford et al., 2007]. Code to reproduce our
results, along with the dataset, is available online 1.

Figure 1 summarizes the results, where the x-axis is the average performance regression for the
regressed queries, and the y-axis shows the overall average performance lift. For some of those
queries with large regressions, they will break the strict service level agreements, leading to customer
dissatisfaction and extra manual investigation work. Therefore, it is necessary for the product team to
adopt a risk-averse approach, mitigating those extreme outcomes in the tail distribution while trying
to improve the overall performance.

As shown in the chart, varying the learning expectile (q) illuminates the trade-off between lift and
regression. There is a moderate q regime where reductions in regression are proportionally larger
than reductions in lift. In particular, our result demonstrates that the risk-averse algorithm effectively
reduces the average magnitude of regressed queries by over 50%, from 3.2% (risk neutral q=0.5) to
1.3% (risk averse q=0.2), while maintaining the same level of overall performance lift. For q ≤ 0.0001
every point is Pareto-dominated, as anticipated by the theoretical analysis (the regret bound degrades
at extreme quantiles). Nevertheless, the relatively larger change in average performance regressions
from risk-neutral to risk-averse with moderate q illustrates the usefulness of this technique.

5 Conclusion

This paper studies the application of contextual bandits to scenarios where average-case statistical
guarantees are inadequate. We show that the composition of reduction to online regression and
expectile loss is analytically tractable, computationally convenient, and empirically effective. Our
experiment demonstrates the trade-off between maximizing average-case outcomes and minimizing
worst-case performance in a steered database query optimizer. These results highlight the effectiveness
of our risk-averse contextual bandit approach, which can be easily applied to other system problems
that require risk aversion.

1https://github.com/zwd-ms/risk_averse_cb
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