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Abstract

The exponential growth of AI model sizes has amplified the demand for special-
ized hardware accelerators capable of efficiently managing complex workloads.
To meet the customization needs of AI accelerators, recent advancements have
enabled the use of chiplets – modular components of a larger integrated circuit that
can be combined to create a complete system on a chip. Chiplet-based architec-
tures offer a flexible and cost-effective solution by integrating modular chiplets
with high-bandwidth memory (HBM), effectively addressing both computational
power and memory capacity requirements. However, the increased complexity of
chiplet designs introduces significant challenges in placement and routing. This
paper presents a novel optimization benchmark and neural approach to the chiplet
placement and routing problem, leveraging a hierarchical Markov decision pro-
cess (MDP). We propose CHIPLETFORMER, a neural architecture that optimizes
placement and routing by not only minimizing routing length but also improving
datarate-dependent electrical system performance, aiming to enhance the efficiency
and scalability of AI acceleration systems. We finally outline several promising
directions for future work.

1 Introduction

AI model sizes are growing rapidly, leading to an increasing demand for specialized hardware
accelerators that can efficiently handle specific AI workloads. This surge is driven by the need
for efficient computation, model-specific memory capacity, and cost-effective solutions, as larger
models require more resources to function optimally [12, 2, 4]. Traditional monolithic chip designs
often struggle to balance the varying computational, memory, and precision requirements of these
workloads. Chiplets – smaller, modular pieces of a larger integrated circuit (IC) that can be combined
with other chiplets to form a complete system on a chip – present a new design solution by enabling
flexibility and modularity [8, 17]. By integrating specialized cores or functions – such as Tensor
Cores for deep learning, AI inference cores for edge applications, and high-performance memory
controllers – chiplets can be tailored to meet the specific computational needs of AI models [22, 27].
This workload customization allows for optimized performance across different AI tasks, from heavy
matrix computations to low-latency memory access [18, 19].

Moreover, the rapid growth of AI model sizes has outpaced improvements in GPU memory capacity,
often requiring more GPUs to accommodate memory demands rather than computational needs [21].
Chiplet architectures address this by integrating more high-bandwidth memories (HBMs), allowing
for customizable memory capacity without adding unnecessary computational power. Additionally,
chiplet-based designs are cost-effective due to improved fabrication yield from reduced die sizes, while
heterogeneous integration and the re-use of chiplets offer a more economical solution compared to
traditional monolithic designs [24]. This combination of scalability, efficiency, and cost-effectiveness
makes chiplets a compelling option for modern AI applications.
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However, adopting chiplet-based designs introduces new challenges in chiplet placement and routing
[28]. As systems integrate more chiplets and HBMs, the complexity of design increases exponentially.
Efficient placement and routing are crucial as they impact system performance by minimizing signal
delays, optimizing power distribution, and managing heat dissipation [6, 5, 23]. Unlike traditional chip
placement [15, 13, 11], chiplet placement and routing must account for strict no-overlap constraints,
precise routing between specific transmitter and receiver locations, and adherence to predefined
netlists [7, 20, 10]. While conventional chip placement benchmarks use half-perimeter wirelength
(HPWL) to estimate total wirelength by measuring half the perimeter of the bounding box enclosing
terminals, our benchmark incorporates the actual routed path distance and the data rate within the
interconnections. Varying data rates introduce specific relationships between routing length and
signal integrity degradation for each netlist connection, necessitating novel methods to address the
intricate interdependencies and constraints unique to chiplet-based designs.

This paper introduces a novel benchmark for the combinatorial optimization of chiplet placement and
routing. In our benchmark, we not only consider the minimum routing path between chiplets, but also
signal integrity of the interconnections between chiplets to ensure robust electrical performance to
achieve better performance in AI accelerators[14]. We model the hierarchical optimization problem
as a Markov decision process (MDP) to concurrently optimize placement and routing. To address the
complexity and constraints of chiplet design, we propose ChipletFormer, an architecture that uses
autoregressive decision-making for efficient chiplet placement.

2 Chiplet Placement and Routing Benchmark Formulation

(a) Problem Instance (b) Solution (c) Reward Metric

Figure 1: Chiplet placement and routing problem definition and objectives: (a) a problem instance defined in
terms of a set of chiplets and netlists. (b) solution as the final design of chiplet placement on the interposer
canvas. (c) reward as the measure of signal integrity of routed interconnections.

The chiplet placement and routing problem, illustrated in Fig. 1, is defined as a constrained com-
binatorial optimization problem with the following specifications: 1) Place the given chiplets of
varying dimensions on an interposer canvas without any overlaps 2) Route the interconnections
between transmitters and receivers on the chiplets according to the pre-defined netlists, ensuring no
intersections occur 3) Routing paths are restricted to avoid traversing beneath chiplets, except the
source and destination chiplets for each interconnection 4) The datarate between each transmitter
and receiver pair is uniquely defined 5) Ensure the eye-opening for each netlist meets the eye mask
specifications outlined in the UCIe1 standards.

Given the increased complexity of chiplet designs, we propose to leverage machine learning. We
formulate the complex problem of optimizing the search space of chiplet placement and routing as a
hierarchical Markov decision process, which allows us to decompose the problem into manageable
sub-tasks while maintaining the interdependencies crucial to finding optimal solutions.

As illustrated in Fig. 2, the chiplet placement and routing problem is modeled as a hierarchical
Markov decision process (MDP), comprising two interlinked MDPs: one for chiplet placement and
another for routing. This approach captures the sequential nature of the problem while maintaining
the inter-dependencies between these two crucial stages.

Let the problem instance be denoted as x, which consists of a fixed-sized interposer canvas with
dimensions (hint, wint), a set of chiplets C = {c1, c2, c3, ..., cn} to be placed, and a set of intercon-

1UCIe (Universal Chiplet Interconnect Express) is an open industry standard for high-speed, die-to-die
interconnects between chiplets in advanced semiconductor packaging[25].
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Figure 2: Hierarchical Markov decision process (MDP) of the chiplet placement and routing problem.

nection netlists I = {i1, i2, i3, ..., ik}. As illustrated in Fig. 1, each chiplet cn is defined as an object
with its height, width, and the location of transmitting (Tx) and receiving (Rx) ports according to the
pre-defined netlists on itself. Each netlist ij = {cTx, cRx, λj} is defined with the transmitter chiplet,
receiving chiplet, and datarate λj . The hierarchical MDP unfolds in two stages. In the first-stage
MDP, dedicated to chiplet placement, the initial state (sp0) is set to the problem instance x. This
stage outputs placement trajectory τp with sequential actions (τp = (ap1, . . . , a

p
n)), resulting in a

transition T p to the next state (sr0 = T p(sp0, τ
p)), which represents the post-placement configuration.

The second-stage MDP, focused on routing, then takes the placement state (sr0) as its initial state
and generates routing trajectory τ r with sequential actions of routing (τ r = (ar1, . . . , a

r
k). These

actions lead to the final state (sT = T r(sp0, τ
r)) with routing transition T r, representing the complete

placement and routing configuration.

Upon completion of both stages, a reward R =
∑k

i=1 λi · |(τ r)i| is calculated based on the final
routing trajectories, reflecting the quality of the overall chiplet placement and routing solution in
terms of electrical performance influenced by the netlist datarates λi. This hierarchical approach
allows for a structured decision-making process that captures the sequential nature of placement
followed by routing while maintaining the interdependencies between these two crucial stages. See
Appendix B for further details of the hierarchical MDP.

3 Methodology
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Figure 3: Overview of the Training Procedure with the ChipletFormer Architecture for Chiplet Placement and
Routing Optimization.
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We introduce CHIPLETFORMER, a novel architecture that outputs a placement trajectory τp =
(ap1, . . . , a

p
n) by autoregressively producing placement actions apt given the updated problem state

spt+1: p(apt | spt ). See Fig. 3 for abstract-level understanding. The initial state sp0 consists of the
problem instance with chiplets and the target canvas, while spt represents the updated canvas with
placed chiplets through action apt . We employ two attention-based encoders to represent spt : the
Chiplet Encoder for representing chiplets and the Canvas Encoder for representing the canvas. Our
decoder is a standard transformer decoder with context provided by the chiplet encoder and canvas
encoder. Chiplet and Canvas, which contains useful information not only for placement but also for
routing congestion using netlist information that can affect the entire optimization process (indicating
that the encoder can learn representations for improved routing performance as well). We refer
Appendix C for additional details on input representation and modeling.

Training of CHIPLETFORMER We use imitation learning, training with the negative log-likelihood
loss on a dataset of guiding demonstrations. Let D = {(x(i), τp(i))}Ni=1 be our dataset of N problem
instances and their corresponding guiding placement trajectories. Formally, our training process for
parameters θ in CHIPLETFORMER involves minimizing the following loss function L(θ):

L(θ) := E(x,τp)∼D [− log pθ(τ
p | x)] (1)

Here, x represents a problem instance (initial state), τp is the guiding trajectory of placement actions,
and pθ(τ

p | x) is the probability assigned by our model to the trajectory τp given the initial state x.

Rollout for Routing The performance after placement, provided by CHIPLETFORMER, is finalized
at the end of each episode by routing the netlists of placed chiplets using the A* algorithm. To
prevent intersections, we implement a sequential routing strategy prioritized by the Manhattan
distance between netlist pairs. These rollout results can potentially be used for training a model as
CHIPLETFORMER, representing promising future work.

4 Discussion

4.1 Preliminary Results

We trained CHIPLETFORMER on the guiding dataset with rule-based heuristics as in Appendix D for
10 epochs with the Adam optimizer, learning rate of 10−4 and batch size of 64. We noted that the
model correctly learned the general behavior of placing the chiplets in a clustered fashion around the
center of the canvas. However, it often did not correctly place the corresponding ports close to each
other, resulting in feasible placements (no overlaps) but several infeasible downstream routing.

4.2 Further works

While the model could place components much faster than heuristics (i.e., seconds compared to
minutes or even hours), we believe the results can be greatly improved, and there are several directions
to pursue further work. Firstly, we plan to determine the reason for the incorrect placement of ports,
which we believe might be due to the inability of our architecture to model edges correctly. These are
only paired by using the same embeddings at the moment. In such a sense, integrating powerful graph
representations as in Lai et al. [11] could help the model correctly understand. Another promising
direction is employing additional strategies for (self-)augmentation of the dataset, including action and
domain invariances [9]. Finally, exploring online and offline reinforcement learning [1, 3] is another
promising avenue for future work that could overcome the limitation of sub-optimal pre-collected
datasets.

5 Conclusion

In this paper, we introduce a novel benchmark for chiplet placement and routing, and present
CHIPLETFORMER, a neural approach that captures the interdependencies of the two hierarchical
tasks while addressing the stringent constraints of chiplet design. Our research not only provides a
valuable benchmark but also highlights the potential of neural methods in solving interdependent
design problems. As the industry shifts toward advanced chiplet architectures, we hope our work will
help advance future innovations in semiconductor design and optimization.
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A Further Background on Chiplets

The semiconductor industry has been driven by the relentless pursuit of improved performance, guided
by the principles of scaling as outlined in Moore’s law. However, as the limits of traditional scaling
are being reached, advanced packaging techniques have emerged as promising solutions to maintain
the pace of performance improvement. In recent years, the demand for even greater performance
enhancements, customization, and production cost efficiency has brought chiplet technology to the
forefront of the semiconductor industry. A chiplet is a modular building block of a larger integrated
circuit (IC) or system-on-chip (SoC). In 1965, Moore predicted that building large systems out of
smaller, separately packaged, and interconnected functions might prove more economical [16]. This
concept, now known as chiplet technology, offers several key economic advantages over monolithic
chips, including improved wafer yield, mixed process technology node integration, reduced time to
market, and the ability to overcome reticle size limitations.

Figure 4: Comparison between the architectures of AMD MI250 and MI300

A recent example of a chiplet-based product is AMD’s MI300 in Fig. 4, which integrates 9 TSMC
5nm chiplets and 8 high-bandwidth memory (HBM) modules. Compared to its predecessor, the
MI250, the MI300 achieves an impressive 8× improvement in AI performance and a 5× improvement
in AI performance-per-watt. As a result, the chipletization of systems-on-chip (SoCs) is expected to
accelerate in the near future.

Model P100 V100 A100 H100 B100
Year 2016 2018 2020 2022 2024

Process 16 nm 12 nm 7 nm 4 nm 4 nm (4NP)

# of SM 56 EA 80 EA 108 EA 144 EA 192 EA

Core type of SM FP32, FP64 + FP16 Tensor + FP32/64 Tensor + INT8/4 Tensor + FP4/6 Tensor
+ INT8 Tensor + FP8 Tensor

+ Tensor Memory
Accelerator

Peak FP32 10.3 TFLOPS 15.7 TFLOPS 19.5 TFLOPS 73 TFLOPS 0.9 PFLOPS

Performance Tensor FP16 - 125 TFLOPS 312 TFLOPS 1080 TFLOPS 1.8 PFLOPS

Tensor INT8 - - 624 TOPS 2160 TOPS 3.5 POPS

Tensor FP8 - - - 2160 TFLOPS 3.5 PFLOPS

Tensor FP6 - - - - 3.5 PFLOPS

Tensor FP4 - - - - 7 PFLOPS

L2 Cache 4 MB 6 MB 40 MB 60 MB N/A

Memory Capacity 16GB HBM2 32GB HBM2 80GB HBM2E 96GB HBM3 192GB HBM3e

Bandwidth 720 GB/s 900 GB/s 2039 GB/s 4110 GB/s 8000 GB/s

# of HBM 4 EA 4 EA 6 EA 6 EA 8 EA

Max Power 300 W 300 W 400 W 700 W 700 W

Table 1: Historical Development Roadmap of NVIDIA GPUs
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With the exponentially increasing AI model size, there has been great demand for AI accelerators
that offer enhanced performance, greater memory capacity, and higher bandwidth. As illustrated in
Table 1, the number of streaming multiprocessor (SM) cores in a single GPU has risen significantly,
from 56 EA in the P100 model to 192 EA in the latest B100 NVIDIA GPU module. Additionally, the
integration of High Bandwidth Memory (HBM) has expanded, with the number of HBMs integrated
increasing from 4 EA in the P100 to 8 EA in the B100, to meet the higher memory capacity and
bandwidth requirements of large-scale AI models. This trend suggests that, if AI accelerator modules
are fabricated using chiplet packaging, the number of chiplets integrated will increase substantially in
future designs.

Moreover, as NVIDIA GPUs are designed for general-purpose computing, the diversity of core types
they support has also broadened. By employing chiplet-based packaging for AI accelerators, the core
types and quantities can be customized to suit specific application requirements. Likewise, memory
capacity and bandwidth can be optimized, enabling tailored solutions for various AI workloads.

Figure 5: Interposer roadmap by TSMC

As shown in Fig. 5, not only have the number of SM cores and HBM stacks increased, but the size of
the interposer has also expanded, driven by advancements in Chip-on-Wafer-on-Silicon (CoWoS)
technology, primarily led by TSMC. This trend aligns with the hypothesis that the number of chiplets
integrated onto a single silicon interposer is expected to grow exponentially. In addition to the
increasing number of chiplets, further "chipletization"—where larger chiplets are subdivided into
smaller units—is anticipated, leading to a substantial rise in the overall chiplet count.

Figure 6: Future chiplet-based architecture with increasing number of chiplets and interconnections

The heterogeneous integration of an increasing number of chiplets and their interconnections poses a
significant challenge in chiplet placement and routing. As shown in Fig. 6, the conventional solution
only involves a few components, whereas the future solution is expected to involve more chiplets and
interconnections. The number of interconnections within a system can range from O(N) to O(N2),
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where N is the number of chiplets. Considering the limited interposer size, placing chiplets and routing
their interconnections becomes a very challenging problem. Moreover, chiplet placement ultimately
determines the overall architecture. It is subject to various hard constraints, including physical
constraints (e.g., no overlaps between chiplets and interconnections), signal integrity specifications
(e.g., maximum interconnection reach and data rate), power integrity specifications (e.g., IR drop
and simultaneous switching noise), and thermal coupling considerations (e.g., the minimum spacing
between chiplets).

Although the objectives of traditional chip placement and chiplet placement may seem similar,
they differ significantly in terms of problem contexts, rewards, and constraints. Chip placement
involves positioning macros and standard cells within a chip (i.e., at the on-chip level), whereas
chiplet placement refers to arranging chiplets (sliced chips) on an interposer package (i.e., at the
off-chip level). Chiplet placement must adhere to multiple constraints, arising from various electrical
requirements and specifications such as signal integrity (SI), power integrity (PI), and thermal integrity
(TI). In contrast, chip placement primarily focuses on optimizing the trade-off between wirelength
and congestion [13]. Additionally, in chiplet placement, the location of ports (i.e., the sources or
destinations of netlist interconnections) on the chiplets is predetermined, meaning the rotation of the
chiplets can significantly impact routing quality.
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B Detailed Hierarchical MDP of Chiplet Placement and Routing

Figure 7: Hierarchical Markov decision process (MDP) of the chiplet placement and routing problem.

First-Stage MDP for chiplet placement consists of state, placement actions, and transition, n denotes
for the number of chiplets.

• Initial State (sp0): An empty interposer canvas of size wint and hint.
• Intermediate State (spt ): The partial placement configuration after t chiplets have been

placed.
• Final State (spn): The complete placement configuration after all n chiplets have been

placed.
• Action (A1): A set of first-stage sub-actions and is a trajectory of sub-actions A1 = τp =
{ap1, a

p
2, a

p
3, ..., a

p
n} = ap1:n. Each sub-action represents the placement of a single chiplet

apt = (xt, yt, θt), where (xt, yt) ∈ {(1, 1), ..., (hint, wint} \ spt−1 are the coordinates for
placement, making sure no overlaps are allowed. θt ∈ {0◦, 90◦, 180◦, 270◦} is the rotation
angle of the chiplet.

• Transition (T p): This function sr0 = T p(sp0, τ
p) represents the post-placement configura-

tion.

Second-Stage MDP for netlist routing consists of state, routing actions, transitions, and reward, k
denotes for the number of netlists.

• Initial State (sr0): The final placement configuration from the first-stage MDP.
• Intermediate State (srt ): The partial routing configuration after k netlists have been routed.
• Final State (sT ): The complete placement and routing configuration after all k netlists have

been routed srk.
• Action (A2): A set of second-stage sub-actions and is a trajectory of routing path A2 =
τ r = {ar1, ar2, ar3, ..., ark} = ar1:k Each sub-action represents the routing of a single netlist
art = {(x1, y1), (x2, y2), ..., (xm, ym)}, where (xi, yi) ∈ {(1, 0), ..., (hint, wint)} \ srt−1
are the coordinates of points along the route and m is the number of points along the route.

• Transition ((T r): This function sT = T r(sr0, τ
r) represents the post-routing configuration,

where the chiplets are placed and routed and is ready to calculate reward.

Reward of the hierarchical MDP is the weighted average routing distance of the netlists. Each netlist
has a weight depending on the datarate of the interconnect.

• Reward: R = 1
k

∑k
i=1 λi · |(τ r)i|

• λi is a datarate-dependent hyperparameter, determined by the electrical simulation-based
look-up table. The eye diagram simulation was carried out for interconects with varying
length and varying datarate. Then, they were evaluted based on the eye mask specification
of UCIe standard.
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(a) 1mm, 1Gbps (b) 1mm, 4Gbps (c) 1mm, 8Gbps (d) 1mm, 12Gbps

(e) 2mm, 1Gbps (f) 2mm, 4Gbps (g) 2mm, 8Gbps (h) 2mm, 12Gbps

(i) 10mm, 1Gbps (j) 10mm, 4Gbps (k) 10mm, 8Gbps (l) 10mm, 12Gbps

(m) 20mm, 1Gbps (n) 20mm, 4Gbps (o) 20mm, 8Gbps (p) 20mm, 12Gbps

Figure 8: Eye diagrams of interconnects with varying lengths and datarates.

B.1 Electrical Simulation-based Reward Function

The reward function in our study incorporates both the routing distance and the pre-defined datarate
of the interconnect. This approach acknowledges that the overall electrical performance is influenced
not only by the length of the interconnect but also by the datarate at which it operates. Consequently,
simply minimizing the total routing distance in the chiplet package does not guarantee optimal system
performance.

To address this complexity, we conducted electrical simulations to evaluate the eye diagrams of routed
channels at various lengths and datarates. An eye diagram is a visual representation of a digital signal,
created by superimposing multiple bit periods of the signal. It provides crucial information about
signal quality, including timing variations, amplitude variations, and noise.

As reported in Fig. 8, we assessed the quality of these eye diagrams by measuring their eye aperture,
which represents the open area of the eye pattern. The eye aperture is a key indicator of signal
integrity, with a larger aperture generally indicating better signal quality. Eye diagrams like Fig. 8
(a) is considered widely open, while Fig. 8 (p) is completely closed. We then compared these
measurements against the eye mask specifications defined by the UCIe standard, which stipulates
minimum requirements of 40mVpp (millivolts peak-to-peak) for vertical eye opening and 0.75UI
(Unit Interval) for horizontal eye opening.

The eye mask specification is evaluated by overlaying a predefined mask on the eye diagram. If any
part of the signal intrudes into the mask area, it fails to meet the specification. This method ensures
that the signal maintains sufficient amplitude and timing margins for reliable data transmission. The
results of the eye mask evaluation is reported in Fig. 10 in terms of UI, the time interval that indicates
the eye opening and Fig. 9 describes how the eye aperture is measured.

As shown in Fig. 10, signal quality deteriorates as interconnection length increases. Similarly, higher
data rates also result in degraded signal quality. On top of that, different interconnection lengths
exhibit varying rates of signal degradation as data rates increase. Based on our experimental results,
we developed a look-up table for the hyperparameter λ, which assigns weights to specific data rates
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Figure 9: Evaluation of Eye Diagram in terms of Eye Mask Aperture.

Figure 10: Eye Mask Evaluation of Interconnects with Varying Lengths and Datarates

and is applied to the routing length. We aim to construct this look-up table such that higher data rates
are given more priority to ensure eye mask specification compliance.

By conducting these comprehensive analyses, we were able to more accurately assess the viability
and performance of various routing solutions, taking into account both physical layout and electrical
signal integrity constraints.
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C CHIPLETFORMER: Input Representation and Model

C.1 Input Representation

CHIPLETFORMER’s input comprises two main components: the current canvas state and unplaced
chips.

Canvas State. Represented as a tensor Xc ∈ RB×N2×4, where B is the batch size, N2 is the total
number of cells in the square canvas, and the 4 features for each cell are:

1. [x, y]: Coordinates of each cell

2. Chip ID: ID of the placed chip (0 for empty cells)

3. Port ID: Port number of the chip (0 for empty cells)

Unplaced Chips. Represented as a tensor Xu ∈ RB×C×K×5, where C is the number of unplaced
chips, K is the maximum size of any chip (e.g., 64 for an 8× 8 chip), and the 5 features are:

1. [x, y]: Coordinates representing chip dimensions

2. Chip ID: ID of the unplaced chip

3. Port ID: Port number of the chip

4. Current chip indicator: Binary flag (1 for current chip to be placed, 0 otherwise)

C.2 Model Architecture

The main architecture is represented in Fig. 3.

C.2.1 Canvas Encoder

The canvas encoder projects features of the current canvas state Xc into the latent dimension D, i.e.
Canvas Encoder: Zc ∈ RB×N2×4 → Zc ∈ RB×N2×D

Table 2: Components of the Canvas Encoder

Component Layer Type Dimension (in,out)
Coordinate Embedding Linear (2, D/2)
Chip ID Embedding Embedding (max_chips + 1, D/4)
Port ID Embedding Embedding (max_chips + 1, D/4)
Canvas Projection Linear (D,D)

C.2.2 Chiplet Encoder

The Chiplet Encoder projects features of the current (remaining) state Xu into the latent dimension
D – this contains crucial information for determining the next location of the current chip at hand:
Chiplet Encoder: Zu ∈ RB×(C×K)×5 → Zu ∈ RB×(C×K)×D

Table 3: Components of the Chiplet Encoder

Component Layer Type Dimension (in,out)
Coordinate Embedding Linear (2, D/2)
Chip ID Embedding Embedding (max_chips + 1, D/4)
Port ID Embedding Embedding (max_chips + 1, D/4)
Unplaced Chip Projection Linear (D + 1, D)
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C.2.3 Input Projection Layer

After passing through the respective decoders, we then pass encoded features to the projection layer
is the concatenation along the dimension 1 (right after the batch dimension B) of the outputs of both
encoders:

Z = [Zc;Zu] ∈ RB×(N2+C×K)×D

C.2.4 Transformer Decoder

The transformer decoder is adapted from Vaswani et al. [26] and processes the input representation
Z ∈ RB×(N2+C×K)×D and outputs an updated representation Y ∈ RB×(N2+C×K)×D, maintaining
the same dimensionality. The decoder consists of L layers, each composed of the following key
components:

Multi-Head Attention (MHA) Multi-head attention allows the model to jointly attend to different
parts of the input sequence with multiple attention mechanisms (or "heads"). Each attention head is
computed by performing scaled dot-product attention:

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V

where Q, K, and V are the query, key, and value matrices, respectively, and dk is the dimensionality
of the key vectors. The input Z is projected into multiple sets of query, key, and value vectors for
each attention head:

Q = ZWQ
i , K = ZWK

i , V = ZWV
i

The outputs from all attention heads are concatenated and linearly transformed:

MHA(Q,K, V ) = Concat(head1, ..., headh)WO

where headi = Attention(QWQ
i ,KWK

i , V WV
i ), and WO is the output projection matrix.

Feed-Forward Network (FFN) The FFN is applied independently to each position in the sequence.
It consists of two linear transformations with a ReLU activation in between, which allows the model
to introduce non-linearity and capture more complex patterns:

FFN(x) = max(0, xW1 + b1)W2 + b2

Here, W1, W2, b1, and b2 are learnable parameters.

Layer Normalization (RMSNorm) RMSNorm (Root Mean Square Normalization) is used to
normalize the input vectors, ensuring stable training and helping the network handle the scale of the
inputs [29]. RMSNorm is computed as:

RMSNorm(x) =
x√

1
n

∑n
i=1 x

2
i

· γ

where x is the input vector, n is the dimensionality of x, and γ is a learnable scaling parameter.

Full Transformer Pass Each transformer layer applies the above components in sequence with
residual connections. The updated hidden state y for each layer is computed as follows:

x′ = x+ MHA(RMSNorm(x)) (2)

y = x′ + FFN(RMSNorm(x′)) (3)
Here, x is the input to the layer, x′ is the intermediate output after attention, and y is the final output
after the FFN.

Output Projection Layer The output of the transformer encoder, Y ∈ RB×(N2+C×K)×D, is then
passed through a linear projection layer to produce the final output O ∈ RB×(N2+C×K). This is
implemented using a linear transformation:

O = Linear(D, 1)

The output is then appropriately masked to ensure valid chip placements and connections, accounting
for any constraints in the task. For instance, nodes greater than N2 in their index are always masked,
since decision-making happens on the canvas.

14



Complete Model: CHIPLETFORMER. The complete CHIPLETFORMER model is built by sequen-
tially applying the input projection, transformer encoder, and output projection layers:

CHIPLETFORMER(X) = OutputProj(TransformerEncoder(InputProj(X)))

Here, X represents the raw input data (canvas and chiplet features), which is first processed by the
input projection layer to map the inputs to the same latent space. The transformer encoder then
captures spatial relationships and dependencies, and finally, the output projection layer computes the
valid chip placements and outputs the final decision.

C.3 Hyperparameters

Table 4 summarizes the key hyperparameters used in the CHIPLETFORMER architecture.

Hyperparameter Value
Model dimension (D) 128
Number of attention heads (h) 8
Number of transformer layers (L) 3
Canvas size (N ×N ) 50× 50
Maximum number of chips 10
Maximum chip dimension 8× 8

Table 4: CHIPLETFORMER Hyperparameters
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D Guiding Data Collection with Rule-based Heuristics

To mitigate the extensive combinatorial solution space inherent in the chiplet placement and routing
problem, we employ imitation learning. This approach leverages near-optimal guiding data to
replace the exploration phase required for policy parameterization, potentially accelerating training
convergence. The guiding data is obtained through a rule-based heuristic method.

In this heuristic approach, the problem instance, consisting of a set of chiplets and netlists, is
represented as a graph. Within this graph, each node corresponds to a chiplet, and each edge
represents a netlist connection between two chiplets. This graph representation allows to figure out
a closed loop in the given chiplet and netlist combinations and is used to determine the order of
chiplet placement. Here’s the procedure of the heuristic method which has three phases: (1) chiplet
placement ordering, (2) chiplet rotation and (3) chiplet placement.

(1) Chiplet Placement Ordering: The process of determining the chip placement order involves
a systematic approach based on the structure and connectivity of the graph representing the chip
arrangement. The method can be summarized as follows:

Cycle Analysis and Initial Chip Selection: Cycles within the graph are analyzed to identify loops
where chips are interconnected. The chip with the highest number of edges (i.e., the highest degree)
is selected as the initial chip for placement. This chip is chosen for its central role in the graph,
providing a robust starting point for subsequent placements.

Priority Queue Creation: A priority queue is constructed to determine the placement order of the
remaining chips. Priority is assigned based on several criteria:

• Direct Connection to Initial Chip: Chips directly connected to the initial chip receive higher
priority.

• Inclusion in Cycles with Initial Chip: Chips that are part of the same cycle as the initial chip
are given intermediate priority.

• Both Connection and Cycle Inclusion: Chips that are both connected to the initial chip and
included in the same cycle are given lower priority.

• Vertex Degree: Chips with a higher degree (more connections) receive a higher priority
within the same level of priority.

Selection and Ordering: Chips are then selected from the priority queue based on their assigned
priorities. Chips with higher priorities are placed earlier in the order. For chips with the same priority,
the size of the chips is considered to break ties, with larger chips being placed earlier.

Final Placement Sequence: The placement order is constructed by sequentially adding chips from the
priority queue, starting with the highest priority and moving to lower priorities. This approach ensures
that chips are placed in a sequence that optimizes connectivity and minimizes potential conflicts.

(2) Chiplet Rotation: The determination of chiplet directions involves aligning the orientation of
each chiplet to ensure optimal connectivity and minimal signal misalignment. This process is carried
out as follows:

Initial Placement and Netlist Order: Chips are placed according to the predetermined placement order.
Netlists, which define the connections between chips, are then processed in sequence based on their
IDs. The goal is to ensure that chips are oriented correctly to match the direction of their connections
as specified by the netlists.

Rotation and Alignment:

• Identify Rotation Needs: For each netlist, the chips involved (transmitter and receiver) are
checked to determine if they need to be rotated to align their ports correctly. This is based
on the netlist’s specified port directions.

• Determine Opposite Sides: The orientation of each chip is compared to the target port
direction. The opposite side of a port direction is used to determine the required rotation.
For example, if a port is on the ’top’ side, it should align with the ’bottom’ side of the
connected chip.
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• Apply Rotation: If a chip’s current orientation does not match the required direction, it is
rotated accordingly. The rotation is performed based on predefined mappings that specify
the degree of rotation needed to achieve the desired alignment.

Process and Adjust Remaining Chips:

• Handling Unprocessed Chips: Chips that have not yet been processed are evaluated in the
context of their remaining connections. If a chip needs to be rotated to match the alignment
of an already placed chip, this rotation is performed based on the netlist connections.

• Verify Final Alignment: After all rotations are applied, the final alignment is checked
to ensure that all chips are correctly oriented and that connections are properly aligned.
Misaligned nets, if any, are identified and reviewed.

Misalignment Check: Identify and Report Misaligned Nets: Any connections that remain misaligned
after the final rotations are identified. Misaligned nets are reported, and their sources and destinations
are documented to assess potential adjustments or corrections.

(3) Chip Placement: To place chips optimally, the heuristic method incorporates several key strategies
and criteria to ensure the best configuration. Here’s a detailed breakdown of the process used to
achieve optimal chip placement:

Initialization: The environment is defined with a canvas of specified dimensions where chips will
be placed. The placement order and directions of chiplets, determined earlier, guide the placement
process.

Initial Placement:

• Place First Chip: The first chip in the placement order is placed at a central or predefined
position on the canvas. If the initial placement is invalid (e.g., overlapping with existing
placements), the method searches for the nearest valid location.

Heuristic Placement Strategy:

• Search for Valid Locations: The method scans potential locations on the canvas to place the
chip. Each candidate location is evaluated for validity, ensuring no overlap with already
placed chips and compliance with spatial constraints.

• Calculate Distances: The method calculates the Manhattan distance between the chip’s ports
and the ports of already placed chips. The goal is to minimize this distance to optimize the
connectivity and overall performance of the chip configuration.

Placement Adjustment:

• Adjust Locations: If a valid placement cannot be found or if the initial placement does not
yield optimal results, the method adjusts the placement by considering alternative positions
or reconfiguring previous placements.

• Maximize Reward: A reward function evaluates each placement based on factors such
as minimized distances between connected ports, adherence to constraints, and overall
configuration efficiency. The method aims to maximize the total reward.

Validation and Constraints:

• Check for Overlaps: Each placement is checked for overlaps with other chips. This ensures
that the spatial arrangement does not violate constraints and that the chips fit within the
canvas boundaries.

• Verify Connectivity: The method verifies that the placement of each chip maintains proper
connectivity with previously placed chips, based on the netlists and required connections.

Optimization and Final Selection:

• Evaluate Configurations: After multiple iterations, the configuration with the highest to-
tal reward is selected. This configuration represents the optimal placement in terms of
connectivity, spatial constraints, and overall performance.
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• Select Best Placement: The final placement is chosen based on the best achievable reward,
reflecting the most efficient and effective chip configuration.

D.1 Hyperparameters of Guiding Data Collection

We collected a total of 1,620 guiding data using the rule-based heuristic method described above. Of
these, 1,420 were used for training, 100 for validation, and 100 for testing. Each data was generated
through 100 iterations of the heuristic method. Each problem instance consists of 10 chiplets and 11
netlists, placed on a 50x50 grid canvas, representing a silicon interposer in real-world applications.

Illustrations of collected guiding data are shown in Fig. 11.

(a) Reward: -4.82 (b) Reward: -6.64 (c) Reward: -6.18 (d) Reward: -9.09

Figure 11: Results of the Chiplet Placement and Routing by Rule-based Heuristics
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