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Abstract

Recently, large language models (LLMs) have achieved significant progress in
automated code generation. Despite their strong instruction-following capabilities,
these models frequently struggle to align with user intent. Specifically, they are
hampered by datasets that lack diversity and fail to address specialized tasks or
edge cases. Furthermore, challenges in supervised fine-tuning (SFT) and rein-
forcement learning from human feedback (RLHF) lead to failures in generating
precise, human-intent-aligned code. To tackle these challenges and improve the
code generation performance for automated programming systems, we propose
a novel Feedback-driven Adaptive Long/short-term memory reinforced Coding
OptimizatioN framework (i.e., FALCON) to enhance automated programming
system performance. From the global level, Long-term memory improves code
quality by retaining and applying learned knowledge, while from the local level,
Short-term memory allows for the incorporation of immediate feedback from com-
pilers and Al systems. Additionally, we introduce meta-reinforcement learning
with feedback rewards to solve the global-local bi-level optimization problem,
enhancing the model’s adaptability across diverse code generation tasks. Evalua-
tions using benchmarks such as APPs and CodeUltraFeedback demonstrate that
our approach not only increases the functional correctness of the generated code,
but also improves its overall quality. Our open-sourced code can be found at
https://github.com/liturte/FALCON,

1 Introduction

The development of Large Language Models (LLMs) has significantly advanced automated code
generation [1]]. Models like CodeLLaMA [2] and DeepSeek-Coder [3], tailored for code-centric tasks,
have demonstrated outstanding performance across programming challenges. While LLMs excel
in instruction-following through tuning [4], they often misalign with user intent, making feedback-
based adjustments critical. For example, InstructGPT [35] leverages reinforcement learning with
human feedback (RLHF), and CodeRL [6] uses compilation feedback to refine model performance.
Similarly, CompCoder [7] enhances code compilability with compiler feedback, and RLTF [8]] offers
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Figure 1: (a) Code generation and evaluation process using compiler and Al feedback systems.
(b) Prompt retrieval from long-term memory for improved generation. (c) Reinforcement learning
integrates feedback from compiler and Al feedback for model optimization.

fine-grained feedback on compiler errors. However, current RL frameworks generate compilation
errors and overlook non-differentiable features like coding style [4]], affecting performance. To
address these challenges, we propose a reinforcement learning system combining long-term and short-
term memory feedback. Long-term memory tracks trends over time for higher-quality code retrieval,
while short-term memory captures recent errors and immediate feedback. The main contributions of
this paper are as follows:

* We combine Short/Long-Term Memories for Reinforcement Learning with short-term
memory for real-time corrections and long-term memory for experiences from accumulated
historical runs.

* We incorporate Non-Differentiable Code Features such as coding style and readability
into the feedback loops, enabling a more comprehensive evaluation of generation quality.

* We involve Meta-Reinforcement Learning for better generalization across various tasks.

2 Methodology

During code generation, the system stores task descriptions, generated code, and feedbacks (e.g.,
compilation results, code style, complexity) in long-term memory. By retrieving this information, the
model references high-quality code, avoids mistakes, and meets the required standards. After code
generation, a judge model evaluates the code and calculates rewards based on feedback, which is
then used to update the model’s parameters. All generated code and feedback are stored for future
reference and optimization. Our framework is shown in Figure

2.1 Long-Term Memory Feedback

Retrieving information from long-term memory significantly improves code quality. We use the
FAISS framework [9] to retrieve relevant historical code, feedback, and evaluation scores. Task
descriptions and feedback are transformed into embedding vectors and then indexed. During code
generation, a query vector from the current task retrieves the top-k most similar historical data,
guiding the process and avoiding past errors. The prompt template is provided in the appendix.

Consider a set of historical data D = (t;, f;, e;);_,, where t; represents the task description, f; is
the corresponding feedback, and e; is the evaluation score. We use an embedding function ¢(-) to
transform these tasks and feedback into embedding vectors v; = ¢(t;, f;) and index them using
FAISS.

During the code generation phase, the current task description ¢.yene and feedback f are transformed
into a query vector ¢ = ¢ (tcurrent). We compute the similarity between the query vector g and the
historical vectors v; using cosine similarity cos(q, v; ), and retrieve the top-k most similar historical
tasks. The retrieval process can be represented as:
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By referencing these most relevant historical tasks and feedbacks, the system can guide the current
code generation process with past mistakes avoided and ultimate code quality improved.

2.2 Short-Term Memory Feedback

During the reinforcement learning phase, we use the generated code w0 to construct the reinforcement
learning loss function, as shown below:

Eﬁne
Lri == Y Rine(thy) log p(id| D, 6,114 1) )

t=Sfine

where Rpp () represents the reward coefficient, and Sgye and Fg,e denote the start and end positions
of the code snippet, respectively. These values are determined based on different types of feedback.

2.2.1 Compiler Feedback

For compiler feedback, we adopt the same settings as CodeRL:

1.0,  if FB(W) is pass
2 —0.3, if FB(W) is failure

B ()
Reoarse (W) = —0.6, if FB(W) is runtime error @
(W)

—1.0, if FB(W) is syntax error

where the value of R 1S based on compiler feedback with Scoarse = 0 and Fepase = 1 for the
start and end positions.

For fine-grained feedback, we follow RLTF, using adaptive rewards proportional to test case success:

N N,
Reror(W) = =03+ 1.3 x —— P 4)
( ) Npass + Nfail

We introduce a reward mechanism that adjusts based on short-term memory recall of error rates
and test error counts. This integrates past performance to improve decision-making by considering
historical error patterns:

Rnegalive = - Z Nerror X Perror (5)
error
where Negor 1S the short-term recall of error frequency, and P, represents the long-term recall of
error proportions.

2.2.2 Al Feedback

Furthermore, we design the LLM-as-a-Judge approach to assess code quality. By leveraging the
advanced reasoning capabilities of large language models (LLMs), we can identify the complexity
and subtle nuances of the code, enabling an evaluation based on code preferences. We focus on the
following coding preferences: (1) Coding Style refers to the consistency in formatting and structure,
ensuring clarity and maintainability, including naming conventions, indentation, and document
comments; (2) Code Complexity measures the logical complexity of the code, emphasizing resource
optimization and efficiency; and (3) Instruction-Following assesses how well the code adheres to
specific requirements, focusing on strict adherence to predefined specifications or tasks. We use an
evaluation model with scores ranging from -1 to 2 as reward signals in the reinforcement learning
process. Templates for prompting are provided in the appendix.

2.3 Meta-Reinforcement Learning for Bi-level Code Generation Optimization

As shown in Figure[2] we utilize a meta-reinforcement learning framework to optimize code genera-
tion, integrating both long-term and short-term memories for better adaptability. From the global
level, Long-term memory Dy, stores historical tasks, generated codes, and feedbacks to provide
valuable context, while from the local level, short-term memory Dgpor¢ focuses on recent feedback to
enable real-time adjustments. This approach leverages the MAML framework [[10] for efficient task
adaptation with minimal updates.
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Figure 2: Our proposed training framework integrates long-term and short-term memory feedback for
code generation. Long-term memory retrieves relevant historical tasks to guide the current task, while
short-term memory feedback—including Al feedback and compiler feedback—optimizes generated
code via reinforcement learning. Meta-reinforcement learning further enhances adaptability through
inner loop (local task optimization) and outer loop (global optimization across tasks).

Long-term memory enhances code generation by retrieving similar past tasks. Task descriptions are
embedded into a query vector g via an embedding function ¢. The top-k most relevant historical
tasks are retrieved using cosine similarity, and the model M,y generates the code W based on the

retrieved tasks: .
W = My (top-k (cos(q, ¢(T;)) | i =1,2,...,n))

Short-term memory is used to adapt the model locally by adjusting its parameters based on recent
feedback. For each task 7;, the inner loop optimization updates the parameters:

0; == 97 - OngiﬁTi (91)
where « is the learning rate and L; is the task-specific loss function.

The outer loop performs global optimization of the meta-learning parameters 0y, by aggregating
feedback across multiple tasks:

emeta = omela - Bvemm Z ET, (0:)

where  is the meta-learning rate. This ensures better generalization across tasks.

The overall framework combines short-term and long-term memory feedbacks with meta-
reinforcement learning to achieve coordinated optimization for both global generalization and local
task adaptation:

Hﬁnal = Optlmlze (emetaa 03 {0;})

3 Evaluation

Due to page limitations, we have provided a detailed evaluation in the appendix. Our evaluation
confirms that our framework effectively enhances the model’s coding capabilities, not only in the
functional correctness of code but also in other metrics such as coding style.

4 Conclusions and Future Work

In this work, we introduce FALCON by integrating long-term and short-term memory feedbacks to
optimize code generation for automated programming systems through meta-RL strategies. Long-
term memory retains past interactions to improve code generation, while short-term memory enables
dynamic adjustments based on recent feedback. Our proposed framework can reduce manual effort
and make automated programming systems more effective. In the future, we aim to improve the
diversity of programming languages and consider more complex code for different types of hardware
(e.g., CPU, GPU, FPGA) with analysis of their related costs.
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A Detailed Evaluation Result

A.1 Quantitative Evaluation on APPS

To ensure a fair comparison, we use the CodeTS 770M model as our baseline. Our benchmarks
include the latest advancements that integrate reinforcement learning (RL) with large language
models (LLMs), particularly CodeRL, PPOCoder, and RLTF. For evaluation, we applied the same
benchmarks and settings used in these previous works. The results demonstrate that our approach
delivers additional performance improvements, surpassing other RL-based methods. This indicates
that, with appropriate feedback, RL can effectively optimize the output space of models, thereby
enhancing the quality of code generation. Specifically, our method achieved pass@1 rates of 8.60%,
2.56%, and 1.25% in the Introductory, Interview, and Competition categories, respectively. The
experimental results are illustrated in Table[2}
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To validate the scalability and robustness of our framework, we conducted experiments with the larger
model, DeepSeek-Coder-Instruct-6.7B, to further evaluate its performance. Notably, the improvement
on introductory-level tasks was significant, which can be attributed to the use of long-term memory
that enhanced the quality of generated data and further unlocked the model’s potential. The results
are illustrated in Table[3]

A.2 Quantitative Evaluation on HumanEval and MBPP

To further validate the effectiveness of our method, we evaluated the zero-shot performance of
the DeepSeek-Coder-Instruct model, trained with our method on our custom dataset, using the
well-established MBPP and HumanEval benchmarks. We also compared these results against other
reinforcement learning methods, such as PPOCoder and RLTF. The experimental results are illustrated
in Table[l]

Compared to other reinforcement learning methods, our method consistently outperforms in both the
HumanEval and MBPP benchmarks. The significant advantage of our method can be attributed to its
diversified feedback mechanism. Unlike other methods that may focus on a single metric, our method
continuously optimizes the model’s generation capability through multi-dimensional feedback. This
approach proves particularly effective in complex tasks and demonstrates a strong ability to enhance
the generation of correct code, especially in a zero-shot learning setting.

Table 1: The results of pass@1 on the MBPP and HumanEval benchmarks. We evaluate the LLMs’
performance in code generation under a zero-shot learning setting.

Model | Humaneval MBPP
DeepSeek-Coder-Instruct 73.8 74.9
PPOCoder 76.8 76.2
RLTF 76.8 75.9
Ours \ 82.9 80.7

A.3 Quantitative Evaluation on CODAL-Bench

In addition to evaluating the functional correctness of the code, to validate the effectiveness of short-
term memory feedback, we used CODAL-Bench, a rigorous and comprehensive benchmark designed
to assess and compare LLMs for consistency with coding preferences. We used the DeepSeek-
Coder-Instruct-6.7B model to conduct tests on the CODAL-Bench benchmark. After applying the
framework, there was noticeable improvement in various coding preferences, particularly in Code
Complexity and Coding Style. This can be attributed to the inclusion of feedback on these aspects in
the short-term memory. However, the improvement in Instruction Following was not as significant.
The results are illustrated in Figure 3]

Table 2: Quantitative evaluation on APPS benchmark.“Intro”: introductory, “Inter”: interview,
“Comp”: competition-level tasks. To ensure a fair comparison, We apply these RL-based methods,
including PPOCoder, CodeRL, and RLTF, using the same base model, CodeT5, as a backbone. We
also compared with models that have a larger number of parameters.

Method Size pass@l pass@5

Intro Inter  Comp all Intro Inter Comp all
Codex 12B 4.14  0.14 0.02 0.92 9.65 0.51 0.09 2.25
GPT-Neo 2.7B 390 057 0 1.12 5.50 0.80 0 1.58

CodeT5 base  770M  3.85 0.58 0.02 1.05 8.52 1.53 0.25 2.82
PPOCoder 770M  4.06 0.79 0.15 1.32 9.97 2.06 0.70 3.37
CodeRL 770M  7.08 1.86 0.75 269 1637 495 2.84 6.81

RLTF 770M 840 228 110 327 1860 557 370  7.87
Ours 770M 860 256 124 350 1975 585 357 817
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Figure 3: Quantitative Evaluation on CODAL-Bench
Table 3: Different Large Language Model as the backbone
Model Size Method | Intro Inter Comp  All
DeepSeek-Coder 6.7B w/o 16.70 7.20  2.30 8.12
DeepSeek-Coder 6.7B w 2240 852 370 10.33
B Example

We provided an example of code generation with long-term memory. When generating code without
long-term memory, it often results in repetitive ValueError issues. By incorporating long-term
memory to retrieve the most relevant code blocks and embedding them as context during generation,
the quality of the generated code can be significantly improved.

Generate directly Long-Term Memory
def solve.(): ) ' Task:You are given
p = stdin.readline().strip() three integers k...
n =len(p) Code: def solve(k, pa,
ans = (n-1) * 9 +int(p[0]) pb):
foriin range(1, n): dp =[0] * 1001
dp[0] =1
return ans foriinrange(1,
ValueError: invalid literal for int() with base 10: " 1001):
dp(i] =dp[i- 1] *
Generate with long-Term Memory | pa +dpli- 1] * pb
ans=0
def solve(): 10?{)! in range(k,
p = stdin.readline().strip() a;15 +=dpli - k] *
n =len(p) ' (pb / (pa + pb))
ans = (n-1) * 9 +int(p{0}) return ans
foriin range(1, n): Compiler Feedback:-
0.6
Coding Style: 2
return res Complexity : 0
Instruct Feedback: ...

Figure 4: An example of code generation with long-term memory incorporated.



C Prompts

We have compiled relevant prompt templates for code generation based on long-term memory retrieval
and Al feedback.

Table 4: Code Generation Template

Please write a Python function based on the task description, referencing the historical context for
inspiration. Ensure that the generated code follows the provided requirements and avoids the listed
errors.

Instruction:

TASK: [instruction]

Context of relevant code:

- Historical Task: [Brief description of a similar task]

- Code: [Code snippet]

- Style Score: [Style score]

- Efficiency Score: [Efficiency score]

- Additional Feedback: [Additional comments or issues]

Requirements:

1. Ensure the generated code adheres to best practices for Python, including proper naming conven-
tions, consistent formatting, and coding standards.

2. Optimize the code for performance, avoiding unnecessary recursion or nested loops.

3. Use built-in or efficient library functions whenever applicable to improve both readability and
performance.

Avoid the following errors:

- [Historical error] — Avoid structural or logical issues found in previous code snippets.

Output:

Table 5: Coding Style Assessment Template.

Evaluate the coding style of provided code segments. Assess how well the code adheres to the best
practices of the language, focusing on readability, maintainability, and efficiency in line with the
language’s idiomatic style.

Evaluation Criteria

Readability: Ts the code easy to read and understand?

Maintainability: Can the code be easily modified or extended?

Efficiency: Does the code execute tasks in an efficient manner?

Adherence to Idiomatic Style: Does the code follow the stylistic norms and conventions specific to
the programming

Reward: Rate outputs on a scale of -1 to 2:

-1. Poor Adherence: The code significantly deviates from standard practices, showing poor readabil-
ity, maintainability, and efficiency.

0. Basic Adherence: The code makes some effort to follow language conventions but lacks
consistency in readability, maintainability, or efficiency.

1. Good Adherence: The code generally follows standards, demonstrating adequate readability,
maintainability, and efficiency, though with room for improvement.

2. Excellent Adherence: The code exemplifies best practices, with high readability, maintainability,
and efficiency, fully adhering to idiomatic conventions.

D Error Category

Due to the differences in languages accepted by Compiler Feedback during unit tests for various
language tasks, we have standardized the definition of sub-errors in Compiler Feedback. The
table [8]9[[I0] below outlines our specifications for Python, C, and Java.



Table 6: Complexity Assessment Template.

Evaluate the solutions and code provided by the assistant based on their complexity. Assess how well
the code manages complexity while achieving the desired outcomes.

Evaluation Criteria

Time Efficiency: Does the code minimize computational time?

Resource Efficiency: Does the code use resources (e.g., memory, CPU) judiciously?

Algorithm Effectiveness: Are the chosen algorithms accurate and efficient in achieving the desired
outcomes?

Optimization: Has the code been optimized for quick processing without compromising the solution’s
correctness or efficiency?

Reward: Rate outputs on a scale of -1 to 2:

-1. Overly Complex: The code is unnecessarily complicated, with a high level of complexity that
makes it hard to understand or maintain.

0. Acceptable Complexity: The code has a reasonable level of complexity, but there may be
opportunities to simplify further.

1. Moderately Simple: The code is simple and well-organized, with minimal complexity and clear
logic.

2. Optimal Simplicity: The code exemplifies the best practices in minimizing complexity while
ensuring functionality.

Table 7: Instruction following Assessment Template.

Evaluate the assistant’s fidelity to provided instructions. Assess how accurately the assistant’s
responses align with user directives, noting any deviations and their justification.

Evaluation Criteria

Precision in Following Instructions: Does the assistant adhere to the specifics of the provided
instructions?

Justification for Deviations: If deviations occur, are they justified by critical necessity or explicit user
request?

Alignment with User Directives: How well do the assistant’s responses match the user’s specified
needs and expectations?

Necessity of Deviations: Are any deviations from instructions made only in situations deemed
absolutely necessary or upon direct user request?

Reward: Rate outputs on a scale of -1 to 2:

-1. Non-Compliant: The assistant frequently deviates from instructions without necessity or user
consent.

0. Acceptable Complexity: The assistant shows some adherence to instructions but deviates without
strong justification.

1. Moderately Simple: The assistant generally follows instructions, with deviations occurring but
justified by necessity or user request.

2. Optimal Simplicity: The assistant follows instructions closely, with minimal deviations, all of
which are well justified.




Table 8: Common Python Errors with Categories.

Sub-error

Description

Category

Syntax Error

Code contains syntax errors that cause the compilation to fail.

Syntax Error

Indentation Error

Wrong indentation format.

Syntax Error

Index Error Index operation is out of bounds. Runtime Error

Type Error An operation or function was applied to an object of an inappro- | Runtime Error
priate type.

Value Error An operation or function received an argument with the correct | Runtime Error
type but with an inappropriate value.

EOF Error The input() function encountered an end-of-file condition (EOF) | Runtime Error

without reading any data.

Timeout Error

Code execution time exceeds time limit.

Runtime Error

Name Error

A local or global name is not defined.

Runtime Error

Key Error

A mapping (dictionary) key is not found in the set of existing
keys.

Runtime Error

Import Error

The imported package is not found.

Runtime Error

ZeroDivision Error

The second argument of a division or modulo operation is zero.

Runtime Error

Recursion Error

Code execution recursive operation exceeds the maximum limit.

Runtime Error

Table 9: Common C Language Errors with Categories.

Sub-error

Description

Category

Segmentation Fault

Accessing memory that the program doesn’t have permission to
access.

Runtime Error

Null Pointer Derefer-
ence

Attempting to dereference a pointer that is NULL.

Runtime Error

Buffer Overflow Writing data outside the allocated buffer memory. Runtime Error
Memory Leak Dynamically allocated memory not being freed. Runtime Error
Syntax Error A syntax mistake in the code, such as a missing semicolon. Syntax Error
Type Mismatch Assigning a value of one type to a variable of another type. Syntax Error

Uninitialized  Vari-
able

Using a variable before it has been initialized.

Runtime Error

Undefined Behavior

Code that can exhibit unpredictable behavior depending on com-
piler or runtime environment.

Runtime Error

Division by Zero

Attempting to divide a number by zero.

Runtime Error

Infinite Loop A loop that never terminates due to incorrect logic. Runtime Error
Table 10: Common Java Language Errors with Categories.

Sub-error Description Category

NullPointerException | Attempting to access an object with a ‘null® reference. Runtime Error

ArrayIndexOutOf Accessing an array index that is out of bounds. Runtime Error

BoundsException

ClassCastException | Casting an object to a subclass it is not an instance of. Runtime Error

NumberFormat Ex- | Attempting to convert a string to a number, but the string doesn’t | Runtime Error

ception have the appropriate format.

StackOverflowError | Recursive method calls that exceed the stack size. Runtime Error

Syntax Error

Any mistake in the code structure such as missing braces or
semicolons.

Syntax Error

ClassNotFound Ex-
ception

The Java class is not found at runtime.

Runtime Error

IllegalArgument Ex-
ception

A method has been passed an illegal or inappropriate argument.

Runtime Error

ArithmeticException | Division by zero or other illegal arithmetic operations. Runtime Error
UnsupportedOperation| When a requested operation is not supported. Runtime Error
Exception

10
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