Don’t Use a Single Large Systolic Array, Use Many Small Ones Instead

H. T. Kung
Harvard University

Presentation at Workshop on ML for Systems at ISCA, Phoenix, AZ, USA
June 23, 2019
Outline

• Background: CNN, matmul, systolic arrays
• Issues of using a single large systolic array
• Solution approaches
 – Column combining
 – Maestro architecture for the use of many small systolic arrays
• Summary of next steps
Thanks to Great PhD Students in the Lab

Miriam Cha
(recently graduated; now a visiting scholar)

Marcus Comiter

Xin Dong

Youngjune Gwon
(graduated; now a visiting scholar)

Brad McDanel
(recently graduated; now a postdoc)

Philippe Tillet

Surat Teerapittayanon
(recently graduated)

James Yang

Sai Zhang

Two new PhD graduate students:
Vikas Natesh and Andrew Sabot

Red color: students who have contributed to work reported in this presentation
Publications from Our Lab Related to this Presentation

- [ASPLOS 2019] Packing **Sparse** Convolutional Neural Networks for Efficient **Systolic Array** Implementations Column Combining Under Joint Optimization
- [ICS 2019] Full-stack Optimization for Accelerating CNNs Using **Powers-of-Two** Weights with **FPGA** Validation
Background: CNN Feedforward Pass as Series of Matrix Multiplications

CNN with 4 Layers

- Fully Connected
- Convolution
- Convolution
- Convolution

Matrix Multiplication View

- Filter Matrix
- Data Matrix
- Result Matrix

rose

data

prediction
More Precisely, Each Convolutional Layer as Matrix Multiplication

Computation of a convolutional layer

Data matrix \(\begin{bmatrix} d_1 & d_2 & \cdots & d_J \end{bmatrix} \)
N Filters \(\begin{bmatrix} f_1 & f_2 & \cdots & f_N \end{bmatrix} \)
Result matrix \(\begin{bmatrix} r_1 & r_2 & \cdots & r_N \end{bmatrix} \)

Equivalent matrix multiplication

\[
\begin{bmatrix} f_1 & f_2 & \cdots & f_N \end{bmatrix} \times \begin{bmatrix} d_1 & d_2 & \cdots & d_J \end{bmatrix} = \begin{bmatrix} r_1 & r_2 & \cdots & r_N \end{bmatrix}
\]
Background: Using Systolic Array for Efficient Matrix Multiplication

Matrix multiplication

\[
\begin{bmatrix}
 f_1 \\
 f_2 \\
 \vdots \\
 f_N \\
\end{bmatrix} \times \begin{bmatrix}
 d_1 & d_2 & \cdots & d_J \\
\end{bmatrix} = \begin{bmatrix}
 r_1 \\
 r_2 \\
 \vdots \\
 r_N \\
\end{bmatrix}
\]

Filter matrix Data matrix Result matrix

Systolic array Implementation

[Systolic array]

[Systolic array]

Filter matrix Result matrix

[Systolic array]

Data

Data skew

Result

[Kung and Leiserson 1979] VLSI Processor Arrays

High efficiency due to: (1) regular design, (2) data flow architecture and (3) memory access reduction
Two Design Choices for Systolic Array Based Accelerators

Option 1:

A single large systolic array

Option 2:

Many small systolic arrays
Problem of Using a Single Large Systolic Array: Under-utilization

• Issue 1: Large matrix may be sparse
• Issue 2: Application may have many matrix multiplications of various shapes and sizes to do
Expanding on Issue 1: Efficient CNNs Are Sparse

- We want to speed up a computation which is **already** efficient
- Efficient CNNs means fewer MAC operations in the computation, typically resulting from weight pruning
- This means filter matrices tend to be highly sparse
 - Moreover, weights can be quantized, even logarithmically (see powers-of-two weights in McDanel, Zhang, Kung and Dong [ICS 2019])
A Challenge: How not to Waste Systolic Cells for Zero-valued Weights

Sparse filter matrix

\[
\begin{bmatrix}
-2^{-2} & 0 & -2^{-1} & -2^{-1} \\
2^{-2} & 2^{-3} & 0 & -2^{-2} \\
0 & 2^{-4} & 0 & 0 \\
0 & 0 & 2^{-2} & -2^{-1}
\end{bmatrix}
\]

(Streamlined CNNs, e.g., after pruning, tend to use many sparse filters)

Systolic array

Systolic cells storing zero weights (circled) are wasteful

Goal: remove these wasteful cells without messing up data synchronization of the systolic array
Jointly optimize:
1. CNN accuracy
2. Systolic array utilization

For high packing density, in combining columns we allow overlapping nonzero entries for each row (e.g., up to 1.75 per row on average). We prune all of them except the one with the largest magnitude.

We retrain the remaining weights to bring up inference accuracy.
Column Combining Illustration

(a) Conventional systolic array

(b) Systolic array under column combining

Combinable filter matrix resulting from column-combining training
By Packing Sparse CNNs, Column Combining Reduces # Required Tiles

Original sparse filter matrix

Column combining (5x reduction in tiles)

Packed filter matrix

150 columns

29 columns
Combining Columns Can Be Made Consecutive by Permuting Rows in the Filter Matrix of the Previous Layer.
Column Combining: Co-design of Deep-learning Model and Parallel Processing Hardware to Make Them Fit Each Other

Column Combining for High Systolic Array Utilization (Weight Pruning)

Network Re-training for High Model Accuracy (Weight Tuning)
Problem of Using a Single Large Systolic Array: Under-utilization

• Issue 1: Large matrix may be sparse
• Issue 2: Application may have many matrix multiplications of various shapes and sizes to do
A Single Large Systolic Array vs. Many Small Ones

Problem: under-utilization

Challenges:
(1) **scheduling** these arrays for matrix computation of various shapes and sizes, and (2) **inter-array communication** via memory banks
Hardware Abstraction for Tiled Matrix Computations

“Tile and pipe” computation model
Latency Profiling of a Transformer Workload
Kung, McDanel, Zhang and Dong [ASAP 2019]

- We have profiled the inference performance on a GPU for a TensorFlow implementation of a 100M-parameter Transformer model.
- The average translation time from English to German sentences is **0.945 seconds**, with a breakdown shown on the right.
- We want to substantially **reduce this latency** with (1) many systolic arrays and (2) on-switch combining (see Maestro system on a later slide).
- Under a new DARPA-sponsored project, we begin to investigate **low-power** approaches based on optoelectronic approaches.
Matrices of Various Shapes and Sizes Used

- w is length of the input sentence. The average length of English sentences is 19. The length may vary a lot.
- The chart on the right is for just one of the 8 Encoder Layers.
- A Decoder Layer has a similar pattern. Note that Decoder Layer is only needed by some tasks such as translation.
- Both BERT and GPT-1/2 only have Encoder Layers.

<table>
<thead>
<tr>
<th>Order</th>
<th>Mul</th>
<th># times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(w,512) @ (512,512)</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>(w,64) @ (64,64)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>(w,w) @ (w,64)</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>(w,512) @ (512,512)</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>(w,512) @ (512,2048)</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>(w,2048, 2048,512)</td>
<td>1</td>
</tr>
</tbody>
</table>
Harvard’s Maestro Memory-on-Logic Architecture for Use of Many Systolic Arrays

Baseline Maestro

Preliminary study

• [IEEE ASAP 2019]: “Maestro: A Memory-on-Logic Architecture for Coordinated Parallel Use of Many Systolic Arrays”

• Initial FPGA prototyping underway for a 2D Maestro
Simulated Maestro’s Performance on 100M-parameter Transformer

A large reduction in latency achieved with 64 small 64x64 systolic arrays

20 ms
Optimization: Minimizing and Parallelizing Memory Access

• Pre-loading of model parameters (weights) to allow a loaded data block to finish all its computations with model weights without having to be loaded again in the future
• Parallel reductions using multiple systolic arrays with on-switch combining circuitry and buffering
• Overlapping the computation time for the current data block with the loading time for the next data block
• Outputting computation results to memory banks where data for the next layer’s computation can be fetched in parallel
Summary and Next Steps

(1) Co-design to allow high-utilization systolic arrays for sparse CNN

(2) Use of many small systolic arrays wins

Next steps:

• FPGA implementation of Maestro as an experimental platform
• Addressing dynamic sparse data in training
• MLIR dialect for optimized scheduling of many systolic arrays