
Learning Execution through Neural Code Fusion
Zhan Shi, Kevin Swersky, Danny Tarlow, Parthasarathy Ranganathan, Milad Hashemi

Confidential + Proprietary

Proprietary + Confidential

Overview

● Motivation
● Background
● Neural Code Fusion
● Experimental Results
● Conclusion

2

Confidential + Proprietary

Proprietary + Confidential

Motivation

3

Proprietary + ConfidentialProprietary + Confidential

2% Performance/Year is the New Normal

4Source: Parthasarathy Ranganathan, More Moore: Thinking Outside the (Server) Box

Confidential + Proprietary

Proprietary + Confidential

● Dynamic speculative execution
○ Branch prediction, value prediction, cache replacement,

prefetching...

Motivation

5

Confidential + Proprietary

Proprietary + Confidential

● Dynamic speculative execution
○ Branch prediction, value prediction, cache replacement,

prefetching...
● Static source code

○ Variable naming, finding bugs, algorithm classification, program
synthesis…

○ Performance-related tasks: device mapping, thread coarsening,
throughput prediction...

Motivation

6

Confidential + Proprietary

Proprietary + Confidential

● Dynamic speculative execution
○ Branch prediction, value prediction, cache replacement,

prefetching...
● Static source code

○ Variable naming, finding bugs, algorithm classification, program
synthesis…

○ Performance-related tasks: device mapping, thread coarsening,
throughput prediction...

● Both views provide useful features

Motivation

7

Confidential + Proprietary

Proprietary + Confidential

for (i = 0; i < k; i++)
{
}

Example: a “Simple” Case for Branch Prediction

8

Confidential + Proprietary

Proprietary + Confidential

for (i = 0; i < k; i++)
{
}

Example: a “Simple” Case for Branch Prediction

9

Highly biased

Confidential + Proprietary

Proprietary + Confidential

for (i = 0; i < k; i++)
{
}

Example: a “Simple” Case for Branch Prediction

10

Highly biased

Branch history doesn’t help

Confidential + Proprietary

Proprietary + Confidential

while(...){
generate k;
for (i = 0; i < k; i++)
{
}

}

Example: a “Simple” Case for Branch Prediction

11

Highly biased

Branch history doesn’t help

Confidential + Proprietary

Proprietary + Confidential

while(...){
generate k;
for (i = 0; i < k; i++)
{
}

}

Example: a “Simple” Case for Branch Prediction

12

Highly biased

Branch history doesn’t help

● Jump out when “close enough”

● Predictable if we knew the relation
[Static] i and k are compared
[Dynamic] values of i and k

Confidential + Proprietary

Proprietary + Confidential

Background: Graph Neural Networks

13

Confidential + Proprietary

Proprietary + Confidential

Background: Graph Neural Networks

● Typical deep learning operates
on IID data points.

14

Confidential + Proprietary

Proprietary + Confidential

Background: Graph Neural Networks

● What if the data points had relational information?

Battaglia et al., 2018

15

Confidential + Proprietary

Proprietary + Confidential

Background: Graph Neural Networks

● Message passing

16

Input graph

Confidential + Proprietary

Proprietary + Confidential

Background: Graph Neural Networks

● Message passing

17

Input graph

Step 0

Confidential + Proprietary

Proprietary + Confidential

Background: Graph Neural Networks

● Message passing

18

Input graph

Step 0 Step 1

Confidential + Proprietary

Proprietary + Confidential

Background: Graph Neural Networks

● Message passing

19

Input graph

Step 0 Step 1 Step 2

Confidential + Proprietary

Proprietary + Confidential

Background: Graph Neural Networks

● Message passing

20

Input graph

Step 0 Step 1 Step 2

GRU GRU

Confidential + Proprietary

Proprietary + Confidential

Programs as Graphs Allamanis et al., 2017

21

Confidential + Proprietary

Proprietary + Confidential

Representing Static and Dynamic Information

● Graphs are an effective representation for static code

● How do we generally represent dynamic information in a
model?

22

Confidential + Proprietary

Proprietary + Confidential

Neural Code Fusion

23

Confidential + Proprietary

Proprietary + Confidential

Full System

24

Confidential + Proprietary

Proprietary + Confidential

Assembly vs Source Code

● Highly structured

25

Confidential + Proprietary

Proprietary + Confidential

Assembly vs Source Code

● Highly structured

26

Confidential + Proprietary

Proprietary + Confidential

Assembly vs Source Code

● Highly structured
● Directly relate data to program semantics

27

Confidential + Proprietary

Proprietary + Confidential

Assembly vs Source Code

● Highly structured
● Directly relate data to program semantics
● Easy to use for architecture tasks

28

Confidential + Proprietary

Proprietary + Confidential

Code Fusion Graph Representation

29

Confidential + Proprietary

Proprietary + Confidential

Dynamic Tasks: Control Flow and Data Flow

● Control flow (branch prediction)
● predict whether a branch statement will be taken or not taken.
● Set branch instruction node to be the target node.
● Binary classification

30

Confidential + Proprietary

Proprietary + Confidential

Dynamic Tasks: Control Flow and Data Flow

● Control flow (branch prediction)
● predict whether a branch statement will be taken or not taken.
● Set branch instruction node to be the target node.
● Binary classification

● Data flow (prefetching)
● predict which address will be accessed next.
● Set src node to be the target node.
● Predict 64-bit address

31

Confidential + Proprietary

Proprietary + Confidential

Multi-Task Representation

● Many other static/dynamic tasks can be defined on the
graph simultaneously
○ Value prediction, indirect branch prediction, memory

disambiguation, caching…

32

Confidential + Proprietary

Proprietary + Confidential

Dynamic Snapshots

● Snapshots
○ The values of the set of variable nodes
○ Captured during program execution

● Used to initialize the graph neural network

33

Confidential + Proprietary

Proprietary + Confidential

Representation Study

● Number “3” in different representations
○ Categorical: [1, 0, 0, 0]
○ Scalar: 3
○ Binary: 11

34

Confidential + Proprietary

Proprietary + Confidential

Representation Study

● Correctly predict when to jump out
● Sample k values as training data

35

for(k=0; k < n; k+=3){
for (i = 0; i < k; i++)
{
}

}

Confidential + Proprietary

Proprietary + Confidential

Representation Study:

● Results
○ Binary > scalar > categorical

36

Confidential + Proprietary

Proprietary + Confidential

Experimental Results

37

Confidential + Proprietary

Proprietary + Confidential

Experimental Setup

● Benchmarks
○ SPEC06 INT

● Tasks
○ Dynamic: control flow (branch prediction) and data flow (prefetching)
○ Static: algorithm classification

● Offline evaluation for both NCF and baselines
○ 70% training
○ 30% testing

38

Confidential + Proprietary

Proprietary + Confidential

Control-flow (Branch Prediction) and Data-flow
(Prefetching)

39

Confidential + Proprietary

Proprietary + Confidential

Algorithm Classification

● Test the usefulness of the learned representation

● We pre-train our GNN on the control-flow task

● A simple linear SVM model

● We get 96% vs 95.3% (50M lines of LLVM IR) using 200k lines of

assembly with no external data sources.

40

Confidential + Proprietary

Proprietary + Confidential

Summary

● NCF combining static and dynamic information

○ creates useful representations

● Different from the traditional dynamic models in architecture

○ Data is usually purely dynamic

○ Model is history-based

● Enhances static models with dynamic program behavior

○ Learned representation can also transfer to a unseen static task

41

Thank you!

Questions?

