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ABSTRACT
Tensor decomposition is a promising approach for low-power
and real-time realization of neural networks on resource-
constrained embedded devices. This paper proposes Au-
toRank, an end-to-end framework for customizing neural
network decomposition using cross-layer rank-selection. For
many-layer networks, determining the optimal decomposition
ranks is a cumbersome task. To overcome this challenge, we
establish an intelligent agent based on a state-action-reward
system that effectively absorbs inference accuracy and plat-
form specifications into the rank-selection policy. Our pro-
posed framework brings platform characteristics and perfor-
mance in the customization loop to enable direct incorpora-
tion of hardware cost, e.g., runtime and memory footprint. By
means of this hardware-awareness, AutoRank customization
engine learns how to deliver high accuracy decomposed deep
neural networks with low execution cost. Our framework
minimizes the engineering cost associated with rank selec-
tion by providing an automated API that is compatible with
popular deep learning libraries.

1. INTRODUCTION
Tensor decomposition and low-rank approximation of

DNN parameters allow for efficient execution on CPU/GPU
platforms; nevertheless, determining the optimal approxima-
tion ranks that conform to the accuracy requirements and
hardware constraints is a standing challenge. To ensure an
effective DNN compression using tensor decomposition, sev-
eral challenges need to be addressed. A number of existing
methods perform the decomposition one layer at a time, thus
requiring per-layer fine-tuning of the network which incurs a
significant retraining cost [1]. Authors of [2] propose to per-
form whole-network compression. Their method overlooks
the DNN inter-layer dependencies, which directly affects
accuracy. Moreover, the rank-selection strategy must be de-
signed in compatibility with the ultimate goal of deploying
the decomposed model on the desired hardware platform.
As such, it is essential to take into account the underlying
hardware specifications when configuring the decomposition,
a concept that is missing in prior works [3, 4].

This paper proposes AutoRank, an intelligent, automated
framework that learns how to perform cross-layer DNN de-
composition that is specifically customized for any given
network architecture and hardware platform pair. We es-
tablish a state-action-reward system that incorporates in-
ference quality and hardware specifications into the rank-
selection policy to ensure a high performance in terms of
accuracy and runtime. AutoRank outperforms hand-crafted

and heuristic rank-selection methods on standard benchmark
networks as it achieves a higher compression rate, better
accuracy preservation, and elimination of customization re-
engineering. The contributions of AutoRank are as follows:
(1) Introducing AutoRank, a holistic learning-based frame-
work for platform-aware DNN customization by parameter
decomposition. (2) Devising a resource-profiling scheme to
automate the process of platform characterization for DNN
decomposition. (3) Proposing the first hardware-aware au-
tomated policy that performs DNN decomposition by simul-
taneously optimizing for inference accuracy and hardware
performance. (4) Development of an API for fast adaptation
of AutoRank to smart DNN-based applications. (5) Evalu-
ating AutoRank on the challenging ImageNet classification
benchmark. Our method achieves an average of 4.88× mea-
sured speedup using platform-aware decomposition with an
average of 0.62% top-5 accuracy decrease.

2. PRELIMINARIES
In a conventional DNN, the trainable parameters of CONV

layers form 4-way tensors denoted by W ∈ Rk×k×c× f , where
k is the window size, c is the number of input channels, and
f is the number of output channels. In this paper we approxi-
mate each 4-way weight using Tucker-2 decomposition. We
refer the reader to [2] for detailed explanation of Tucker-2 de-
composition and their usage in DNN compression. By means
of such decomposition, a CONV layer can be represented as
three consecutive layers depicted in Fig. 1. The size of these
convolution layers is determined by the approximation ranks.
Larger ranks result in lower approximation error but come
at the cost of a higher computational complexity. To utilize
Tucker-2 decomposition for DNN compression, one needs to
specify 2 approximation ranks for each convolutions layer.
Finding the combination of ranks across all layers such that
the overall execution cost s minimized and the inference ac-
curacy is maximized is extremely challenging. In this paper,
we select these ranks in an intelligent and automated manner.
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Figure 1: Tucker-2 decomposition for a CONV layer.
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Figure 2: An overview of AutoRank framework consisting of three stages, namely, hardware profiling, automated rank-selection,
and fine-tuning.

3. AutoRank GLOBAL FLOW
A schematic overview of AutoRank framework is illus-

trated in Fig. 2. In order to generate a decomposed DNN
configuration that is customized to the pertinent hardware
specifications, AutoRank sequentially performs three inter-
linked stages, namely, hardware profiling, automated rank-
selection, and fine-tuning. Stages of AutoRank pipeline are
specifically designed such that they entirely separate the users
from complications of efficient DNN inference on resource-
constrained embedded devices.

3.1 Hardware Profiling
An efficient DNN compression scheme is one that takes

into account the implications of the compaction method on
physical performance. To this end, AutoRank identifies the
underlying hardware and incorporates platform-specific met-
rics into the rank selection policy. Such automated hardware
identification allows for a customized rank selection that is
specifically tailored to conform to the platform constraints,
e.g., computing power, memory bandwidth, or speed (run-
time). In order to fully automate such a rank-selection pro-
cess, AutoRank first gathers abstract information regarding
the physical performance during execution of the desired
DNN architecture and its decomposed variants. This infor-
mation is later used in the automated rank-selection module
(Section 3.2) to customize the ranks per hardware.
Problem Statement. The first step towards hardware profil-
ing is to specify the hardware optimization goal which can
take the form of minimizing runtime, memory footprint, or
power consumption. We perform hardware profiling by mea-
suring the cost (e.g., runtime) associated with the execution
of individual layers in a given DNN as explained below.
Per-Layer Performance Identification. For each DNN
layer, we quantize the possible decomposition ranks in each
direction into b bins. For a CONV layer with c input and f
output channels, the quantized rank can have b2 possiblities:

R ∈ {(rc,r f )|rc ∈ {
c
b
, . . . ,c},r f ∈ {

f
b
, . . . , f}}. (1)

AutoRank executes the decomposed layer corresponding to
each configuration and measures the cost, and uses this infor-
mation in automated rank-selection (Section 3.2).

3.2 Automated Rank-Selection
When applying Tucker decomposition, the network com-

pression rate and the inference accuracy are directly deter-
mined by the per-layer decomposition ranks, Rl = (rc,r f ).
We propose an iterative algorithm that aims to determine the
above-mentioned ranks across all layers, i.e., {R1, . . . , RL}
for an L-layer DNN. The objective of this algorithm is to
minimize a physical cost measure (e.g. runtime, power, mem-
ory footprint, etc.) under a certain inference accuracy re-
quirement. Our proposed automated rank-selection incurs
significantly lower cost than pure Reinforcement Learning
(RL)-based solutions while successfully achieving efficient
DNN inference on embedded hardware. We formulate the
rank customization problem using a state-action-reward sys-
tem described below.

State: A state (S) corresponds to a list of per-layer decompo-
sition ranks, {R1, . . . , RL}, for all DNN layers. Each state
renders a certain accuracy, accS, and a certain overall hard-
ware cost, costS = ∑

L
l=1 cost(Rl), where the per-layer hard-

ware costs are obtained by resource profiling (Section 3.1).

Action: An action ARl decomposes the weights of the l-th
layer with the selected ranks Rl . Each action leads to a next
state, S′, with a certain total cost (costS′ ) and accuracy (accS′ ).

Reward: To asses an action (A) at a given state (S), we
formulate the following reward:

reward(A,S) =
costS− costS′

exp(accS−accS′)
. (2)

The numerator of this reward function encourages reduction
in the underlying hardware cost. The denominator is an expo-
nential term that penalizes decrease in the inference accuracy.
As such, the reward function models the ultimate goal of
efficient implementation with minimal accuracy degradation.
Iterative Rank-Selection. Algorithm 1 presents a pseudo-
code for the proposed rank-selection policy. Initially, all
DNN layers are set to have full-rank weight parameters, i.e.,
no decomposition is applied (line 1). At each step, possible
actions are evaluated where each action selects one layer
(l) and changes its current rank (Rl) to one of the possible
quantized ranks (Rl

next, line 11). For each of these actions, the
corresponding inference accuracy is measured by evaluating
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the decomposed DNN on a small subset of validation data.
Next, all rewards are calculated using Eq. 2 and the action
with the highest reward is applied (line 16). At each iteration,
both total cost (costS) and inference accuracy (accS) decrease,
resulting in a trade-off between inference accuracy and the
hardware performance measure. At the end of each iteration,
all actions resulting in a higher cost than the optimal action
are eliminated from the search space (line 22). As such, the
search overhead is diminished over iterations.

3.3 Fine-tuning
To minimize the search overhead, no re-training is per-

formed amidst AutoRank iterations. Upon completion of
Algorithm 1, AutoRank re-trains the chosen decomposed
DNN configuration to restore the accuracy loss. Fine-tuning
is performed by standard back-propagation routines. As we
show in our experiments, the accuracy that is achieved imme-
diately after customization is highly correlated with the one
after fine-tuning.

4. EXPERIMENTS
To corroborate the effectiveness of our proposed methodol-

ogy, we evaluate two well-known DNN architectures, namely,
Alexnet (5 CONV and 3 FC layers) and VGG-16 (13 CONV
and 3 FC layers). Our experiments are performed on the
ISLVRC-12 (ImageNet) visual dataset consisting of 1000

classes. We use Pytorch for DNN description and fine-tuning.
For Tucker decomposition, we utilize the Tensorly pack-
age [5]. The first step for evaluating AutoRank is to extract
hardware-specific information by means of the hardware pro-
filing tool explained in Section 3.1. We randomly sample
1000 images from the ImageNet validation data, which are
then fed to the rank-selection algorithm together with the
extracted hardware profiling reports. The minimum (top-1)
accuracy threshold (θ in Algorithm 1) is set to 25% and the
number of per-mode quantized ranks (b in Algorithm 1) are
set to 8 in our experiments. Once the decomposed DNN is
configured, we deploy the model on an embedded board with
an ARM-A57 processor to measure runtime and power.

4.1 Runtime and Accuracy Analysis
We run AutoRank algorithm with the cost in Eq. 2 set to

measured runtime. The result of the algorithm is a set of per-
layer rank configurations that capture the trade-off between
runtime and accuracy as shown in Fig. 3. The accuracy of
AutoRank decomposed DNNs can be further improved by
fine-tuning, which takes place after Algorithm 1. To show this
effect, we select several candidate configurations (shown by
arrows) and fine-tune the corresponding DNNs for 15 epochs.
The training curves are presented in Fig. 4. We note that the
final accuracy is correlated with the initial validation accuracy.
Such correlation allows us to run AutoRank without fine-
tuning the model throughout the search iterations, ensuring a
fast rank-selection process.

Figure 3: Trade-off curve between runtime and accuracy
obtained by Algorithm 1 for AlexNet (left) and VGG-16
(right). Accuracies are reported before fine-tuning. Runtimes
are measured for single image inference on ARM-A57 CPU.
Arrows show the selected configurations to be fine-tuned.

Figure 4: Fine-tuning selected configurations of Fig. 3.
Effect of hardware profiling. It is often observed in prior
work [2,6] that the measured speedup on compressed DNNs is
lower than the expected “theoretical” speedup defined based
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on the number of floating-point operations (FLOPs) required
for inference. An interesting property of AutoRank is that
it achieves higher measured speedup compared to what is
expected in theory. Fig. 5 shows the two speedups for the
evaluated benchmarks. AutoRank directly incorporates im-
plicit hardware-related factors (e.g., memory access) that
impact runtime rather than solely relying on the number of
FLOPs. This hardware-aware customization greatly boosts
the performance on constrained processors.

Figure 5: Theoretical and measured speedups. AutoRank
customized models achieve higher actual speedup, compared
to theory, in all benchmarks.

4.2 Power and Energy Analysis
To examine the energy efficiency of AutoRank runtime-

optimized configurations, we measure the power consump-
tion of Jetson TX2 embedded board during model inference.
Measurements are obtained from three rails corresponding
to CPU, SOC, and Memory. Fig. 6 summarizes AutoRank
energy usage (normalized by the uncompressed model’s en-
ergy). To provide a more detailed analysis, we present the
instantaneous power consumption in Fig. 7. Here, the start
and end times for execution of DNN layers are shown by
the vertical lines on each figure. As seen in the magnified
curve, decomposed convolutions at the beginning and end of
layer execution have lower power consumption. This is due
to the lower cost of point-wise (1× 1) convolutions (corre-
sponding to CONV1 and CONV3 in Fig. 1) that take place in
decomposed layers. This effect along with lower overall run-
time allows AutoRank to achieve significant energy saving
as shown in Fig. 6.

Figure 6: Normalized energy for AlexNet and VGG-16.

4.3 Memory Analysis
Similar to our runtime-oriented rank-selection in Fig. 3,

we generate a set of configurations for memory-optimized de-
composition. In this case, the cost in the denominator of Eq. 2
is defined as the total number of parameters in the weight
tensors which is directly translated to the pertinent memory
footprint. We then select three candidate configurations that
achieve the same level of accuracy as the run-time optimized

configurations selected. Fig. 8 presents the comparison be-
tween the acquired memory/runtime-optimized AutoRank
models in terms of runtime and memory. As can be seen, the
memory-oriented optimization achieves a higher compres-
sion rate than the runtime-based policy; however, the ranks
selected for memory compression lead to a high runtime.
In this case, we observe that AutoRank aggressively targets
fully-connected layers and approximates them with lower
ranks to save memory, but does not apply severe decomposi-
tion to the compute-intensive convolution layers. This exper-
iment further validates the effectiveness of hardware-aware
optimization. It also demonstrates the automatic adaptation
of AutoRank compression policy to the underlying hardware
cost by means of our reward function (Eq. 2).

4.4 Summary and Comparison with Prior Art
Table 1 summarizes the corresponding runtime improve-

ment and reduction in FLOPs achieved for the AlexNet and
VGG16 networks, respectively. We report our top-5 test ac-
curacy for candidate configurations (shown in Fig. 3) prior to
fine-tuning, after 1 epoch of re-training, and after 15 epochs.
For AlexNet and VGG-16, AutoRank achieves up to 4.43×
and 9.35× reduction in runtime, with a respective top-5 ac-
curacy degradation of less than 1.07% and 1.21%.

To better demonstrate the effect of cost-aware rank selec-
tion, we compare AutoRank with the original Tucker decom-
position methodology [2]; in that work, the ranks are selected
such that the energy of per-layer tensor approximations is
higher than a pre-defined value. While the aforementioned
method can achieve a low reconstruction error for single-
layer tensor approximation, it does not model the inter-layer
correlation for whole-network compression, resulting in low
accuracy rates immediately after compression (corresponding
to 0 fine-tuning epoch in Table 1). As seen, [2] reduces
the top-5 accuracy of AlexNet and VGG-16 to 23.39% and
34.06%, respectively. AutoRank, on the other hand, allows us
to preserve the accuracy prior to fine-tuning: in Config 1, we
obtain 77.10% top-5 accuracy and 1.62× runtime improve-
ment for AlexNet. Similarly for VGG-16, we achieve 3.95×
speedup with 79.00% top-5 accuracy in Config 1.

We can fine-tune the models to improve the accuracy. We
achieve faster training convergence compared to the prior
work. For example, considering the fine-tuning of VGG-16
in Config 2, AutoRank achieves 85.97% top-5 accuracy af-
ter 1 epoch and eventually obtains 89.61% after 15 epochs,
whereas [2] achieves 78.68% and 89.4% after 1 and 15
epochs, respectively. This is a direct result of starting the
fine-tuning from a good initial state with carefully-selected
ranks that do not severely impact the accuracy.

5. RELATED WORK
The effectiveness of Tensor decomposition for DNN ac-

celeration has been shown in a line of contemporary re-
search [3, 7]. Authors of [1] propose to utilize CP decom-
position to accelerate CONV layers. They propose a one-
layer-at-a-time strategy where the DNN is fine-tuned after
decomposing each layer. The method proposed in [2] is the
most relevant work to AutoRank, where the authors utilize
Tucker decomposition to reduce the computations in CONV
layers. Their approach follows a one-time, whole-network,
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Figure 7: Power monitoring for AlexNet (left) and VGG-16 (right). The top row shows power curves for the original
uncompressed model. The bottom three rows correspond to Config-1 through 3, respectively. In this example, the AlexNet
model runs a batch of 32 images while the VGG-16 model performs single image inference.

Figure 8: Comparison between memory-oriented (dark blue)
and runtime-oriented (light blue) rank configurations. The
latter achieves better runtime while the former gains higher
memory compression. At each Config X, the corresponding
pairs have equivalent classification accuracy.

compression and re-training strategy. For rank selection, the
authors suggest utilizing Variational Bayesian Matrix Factor-
ization, which essentially aims at minimizing the L2-norm of
the tensor reconstruction error. We argue that this approach
is sub-optimal since the L2-norm does not necessarily reflect
the inference accuracy of the DNN. In addition, such rank se-
lection is oblivious to the underlying hardware specifications
and merely targets the number of computations. AutoRank,
on the other hand, directly incorporates inference accuracy
and hardware execution cost in the rank-selection policy.

On a separate track of research, reinforcement learning
has been used [8] to automate hyper-parameter selection
for channel pruning [9]. Similar to [8], we define a reward

function for decision making; however, our methodology
is different in that AutoRank is an end-to-end framework
which directly incorporates hardware cost into the decision
policy. In addition, since the state transitions in AutoRank
are deterministic, our methodology does not require training
an RL agent and incurs much lower overhead.

6. CONCLUSION
This paper proposes a fully automated framework for

hardware-aware compression of DNNs via tensor decom-
position. We devise an intelligent rank-selection module
that adaptively selects the best configuration of decompo-
sition ranks across DNN layers such that the decomposed
model optimally executes on a desired hardware platform.
Our automated rank-selection engine accommodates vari-
ous embedded hardware constraints, e.g., runtime, memory
footprint, and power. In order to efficiently model the lim-
itations of the resource-constrained platforms, we leverage
a hardware profiling module which generates performance
reports to be used for policy making by the rank-selection
engine. AutoRank automated rank-selection incorporates a
state-action-reward scheme inspired by RL to select several
configuration of per-layer ranks, each of which demonstrate
a certain trade-off between model accuracy and compression
rate. AutoRank achieves higher practical performance on
different DNN architectures compared to prior work. Our
evaluations on the challenging ImageNet dataset together
with our measurements from an embedded processor fully
corroborate the effectiveness of AutoRank.

Table 1: Summary of selected runtime-optimized models.

Network
Top-5 acc (%) FLOPs

(×108)
Runtime

(s)
Theoretical

Speedup
Measured
SpeedupFine-tuning

Epochs 0 1 15

AlexNet

Baseline 81.05 7.14 7.13 - -

AutoRank
Config 1 77.10 78.02 81.01 5.43 4.39 1.31× 1.62×
Config 2 71.01 74.16 80.37 3.49 2.21 2.04× 3.23×
Config 3 59.01 73.36 79.98 2.77 1.61 2.58× 4.43×

Kim et al. [2] 23.39 74.74 78.33 2.72 2.11 2.63× 3.37×

VGG-16

Baseline 90.1 138.3 285 - -

AutoRank
Config 1 79.00 86.78 90.05 49.5 72.15 2.79× 3.95×
Config 2 59.96 85.97 89.61 31.7 42.55 4.36× 6.70×
Config 3 30.96 83.98 88.89 23.6 30.48 5.86× 9.35×

Kim et al. [2] 34.06 78.68 89.4 31.4 42.86 4.40× 6.64×
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