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Abstract

Automatically understanding the semantics of source code opens up opportunities1

for creating sophisticated programming assistants that are much needed in today’s2

world dominated by software. To encourage more work in this area, we introduce a3

dataset, along with several tasks, for “captioning” data science source code. The4

dataset comprises Python function code from major data science libraries. The5

corresponding “captions” are extracted from well-formed docstrings succinctly6

describing the functions. We propose three different datasets and related tasks7

as follows: (1) Given a pair (Code, Caption), decide whether the Caption indeed8

describes the Code; (2) Given a triplet (Code, Caption A, Caption B), choose9

the correct Caption matching the Code; and (3) Given source code of a function,10

generate the appropriate caption. We utilize adversarial techniques to render the11

datasets appropriately difficult, leaving sufficient headroom for improvement over12

baseline systems using state-of-the-art NLP models and summarization techniques.13

The datasets will be made available to the community as a benchmark to aid further14

research in the area of automated code semantics.15

1 Introduction16

The ability of automatically understanding the semantics of software code leads to software engineer-17

ing tools capable of semantic code search, automated documentation, bug identification and even18

code generation. This observation spurred research in machine learning on software code. Although19

similarities exist between programming languages and natural language, there are substantial dif-20

ferences between the two, in particular, in the way programming tasks are encoded, thus rendering21

a straightforward application of machine learning to code challenging. Simply applying natural22

language processing techniques do not work out of the box, and significant innovation is needed to23

address these differences [3].24

The goal of our work is to encourage development of such innovative techniques by creating and25

providing the community with well-defined tasks and benchmarks relevant to code semantics.26

1.1 Existing tasks and corpora27

Machine learning on code is a relatively new domain with few datasets. For a comprehensive review28

of existing machine learning approaches on code we refer the reader to a survey by [3]. Much of the29

work done so far has drawn on code from open repositories, selected on the basis of the number of30

stars on GitHub, for instance, or maturity/popularity of the project. Other datasets are built from31

StackOverflow discussions and code [13]. The tasks are varied in formulation and purpose. Some32

examples of such tasks include:33

• code summarization [9, 5, 12] in which the task is to generate function names, short34

documentation or comments [16].35
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• class name, variable name or variable usage prediction [2, 17, 4] in which the task predicts36

variable names or misuse of variables, which can be used in debugging.37

• code completion tasks [11, 18, 6] meant to assist with code construction.38

• program synthesis [8, 21, 22, 10, 19, 20] which generates fragments of code or entire39

programs from some form of specification.40

Despite tremendous work in this domain, not all datasets are made publicly available and no standard41

datasets and tasks have emerged yet. One dataset based on Python was recently introduced [15], but42

proved to be difficult to use due to duplications in the train/test set [1, 9].43

For the datasets published previously, there are two main issues: (1) the quality of code and its44

documentation in most open source projects tends to vary considerably, creating too much variability45

and potentially affecting the quality of the datasets derived from code at large; (2) most of the46

tasks bridging natural language and code have focused on generative tasks, such as producing code47

summaries or method names, which are difficult to evaluate due to the subjectivity of the task 1. The48

subjective nature of the generative tasks makes evaluation and assessment of progress difficult.49

In this work, we take a systematic approach to creating a dataset with corresponding machine learning50

tasks that are easier to evaluate with the goal of advancing the automatic understanding of code51

semantics.52

1.2 Dataset and task construction53

Our starting point is the observation that code within libraries tends to be accompanied by higher54

quality documentation in terms of consistency and structure, as compared to code in the wild. Based55

on this observation, we adopt library code for the dataset generation. In particular, we focus on56

Python libraries in the data science domain because these libraries tend to have code that is shorter,57

more linear, with less branching, more self-contained and well-defined, compared to large general58

purpose codebases. We believe code from such a domain has a better chance of having the kind of59

structure needed to provide a good signal for machine learning (ML). We include code in popular60

data science libraries in Python such as scikit-learn, statsmodels, numpy, scipy, pandas.61

While the data science code is well structured, its documentation tends to be long and detailed, often62

including descriptions of the mathematical underpinnings of the particular technique at hand. Any63

ML task that is geared towards generation of such descriptions is unlikely to be practical. In contrast,64

we took advantage of the docstring structure to extract a ‘caption’ for each function. In Python,65

this tends to be a short 1-2 sentence summary of the function’s core characteristics appearing at the66

beginning of the Python docstring. Extracting all functions along with their captions results in a data67

pool we refer to as CodeCaption.68

Based on the pool described above, we propose three tasks designed to fill the gaps outlined earlier.69

The first two tasks address the difficulties with subjectivity inherent in generating unconstrained70

text/code by providing a fixed set of alternatives to choose from. The first task predicts whether a71

caption belongs to a piece of code. It is a binary classification task detecting pairs (Code, Caption)72

that belong together versus those that do not. The “positive pairs” were extracted from library code,73

while the “negative pairs” were generated in an adversarial fashion to make the task sufficiently74

challenging. The second task is an easier variant of the first, where the system needs to decide which75

of two candidate captions belongs to the code. Both these tasks are binary classification tasks for76

which accuracy can simply help evaluate and compare different techniques. The third task involves77

text generation, similar to [9, 5, 12].78

In addition to the datasets and the tasks definition, we provide baseline results using state-of-the-art79

models to establish that the proposed tasks are sufficiently challenging. For this, we used BERT [7]80

to create baseline models yielding a 73% classification accuracy on Task 1, and 80% classification81

accuracy on Task 2. For the generative Task 3, we include baselines using neural machine translation82

(NMT) (F1 of 0.3) and models based on recent work of Fernandes et al. on structured neural83

summarization [9] (F1 of 0.3), which was targeted specifically at code documentation generation.84

1Although generative tasks such as code summarization and documentation generation are desirable from a
pragmatic standpoint, they are subjective by design. Even if human performance were taken into account, it
is hard to imagine the case of two developers choosing to name a method exactly the same way, or generate
documentation that is exactly the same.
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2 Methodology85

To construct the dataset, we included code from the following popular Python data science library86

distributions: scikit-learn, statsmodels, numpy, scipy, pandas. All testing and tutorial code as well as87

functions with empty docstrings were excluded. Our final collection had 9851 functions with their88

corresponding docstrings. We partitioned this collection such that 80% was used for training and89

20% for test. For models that required hyperparameter tuning, we used 10% from the training set as a90

development set 2. It is important to note that, by design, there are no repetitions among samples.91

While some duplication in high-level functionality is possible across libraries, no duplication at the92

code level occurs. Duplication has rendered previous datasets hard to use [1].93

As mentioned previously, the docstrings tend to be well structured, typically with a line or two in94

the beginning summarizing the functionality of the code. We extract this brief description from each95

docstring and refer to it as the code caption. The next sections describe the datasets and the associated96

tasks. For a sample of the dataset, we invite the reader to check the Appendix.97

2.1 Task 1: Detecting matching code captions98

The first task is to detect whether a caption belongs to a piece of code. It is a binary classification99

task detecting matching (i.e., positive) pairs (Code, Caption). The positive pairs were extracted from100

library code, while the non-matching, negative pairs were generated in an adversarial fashion to make101

the task sufficiently challenging. To create the negative pairs, we followed an iterative procedure. For102

each sample, a random caption was drawn from the complement of the train (or test) set, yielding a103

dataset with one positive and one negative pair per code sample 3.104

This (initial) dataset was used to train a classifier based on BERT [7]. We used the small, pre-trained105

configuration of BERT adopting default settings of the paraphrase identification task, because code106

captions are analogous to a paraphrase of code. A sequence length of 128 4 was used.107

This first BERT-based model, trained on random negative pairings, resulted in an accuracy of 93%.108

To increase the difficulty of the dataset, in the next iteration, we selected adversarial negative samples,109

i.e., samples that are competitive with the positive ones: for each function code, we randomly chose110

100 captions; the generated pairs were fed to the first BERT-based classifier followed by a random111

selection of one (negative) caption that the classifier labeled as positive. This iteration was repeated112

for both train and test set resulting in a new train/test datasets.113

The newly generated datasets were used again to train a classifier based on BERT as explained above.114

This time, the classifier reached an accuracy of 83%. We repeated the adversarial procedure one115

more time. In this iteration, we increased the initial sampling buffer to 500 captions to maintain116

sufficient numbers of incorrectly labeled (i.e., competitive) candidates. After the second adversarial117

iteration, the BERT-based classifier obtained 73% accuracy, which we deemed as providing sufficient118

headroom to declare this as the final dataset.119

When training the BERT-based classifiers, we considered function code as a sequence of tokens. We120

applied simple tokenization to both the code and the captions. In our experimentation, a lot of the121

signal used by BERT was present in the function signature. We hypothesize that improving on the122

performance of this classification task will require exploiting the structured nature of code to further123

approximate its semantics.124

2.2 Task 2: Select correct code caption out of two candidates125

The second task determines the correct caption given a triplet with function code and two captions,126

one of which is the correct one. The dataset used for this task is derived from the previous dataset,127

using the negative captions created in the previous dataset. As in the previous task, we used BERT128

to generate a baseline model. For this classifier, same BERT paraphrase task configuration was129

2Also referred to as validation set
3The pairs are always formed drawing on the corresponding partition, never crossing the train and test set

boundary
4In our experimentation, we find that increasing the sequence length does not increase the performance

significantly (within 1-2%), while the training time increases significantly. We posit that this is due to the fact
that a lot of the signal is in the function signature which is captured in a shorter length sequence.
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Dataset Size
Task Train Dev Test
Detect Matching Caption 15776 - 3946
Two-Choice Pick 7888 - 1973
Generate Caption 7099 789 1973

Vocabulary
Code vocabulary size 26654
Caption vocabulary size 5450
Out-of-vocabulary rate 3.3%

Table 1: Dataset statistics.

Task BERT accuracy on Test
Detect Matching Caption 73.1%
Two-Choice Pick 80.2%

Table 2: Performance of BERT-based classifiers.

employed, feeding the model two pairs of (Code, Caption) and training the classifier to select which130

one is the correct pairing.131

The BERT model’s accuracy was 80%. Performing iterations, as described in Section 2.1 above,132

gained no further increase in difficulty.133

2.3 Task 3: Generating caption text, given code134

Generating code captions is a much more difficult task and, due to the fact that different wordings135

can have similar semantics, this task is harder to evaluate. However, we included a generative task of136

producing captions for completeness and due to the popularity of such tasks [9, 5, 12]. Thus, given a137

function source code, an algorithm is expected to produce 1-2 sentence description in natural language,138

which then can be compared to the positive caption. For this task, we used the initial train/dev/test139

partitions. The baselines based on OpenNMT [14] and structured neural summarization [9] reached140

.3 F1 score, leaving considerable room for improvement.141

3 Dataset and baseline results142

3.1 Dataset statistics143

Table 1 shows basic statistics for the three tasks. The first two tasks (Detect Match and Two-Choice144

Pick) come without a designated Development (Dev) partition as we did not perform hyperparameter145

tuning. Note that for the first task, there is an equal number of positive and negative captions. For the146

caption generation, we randomly split the training set further into training and dev set.147

3.2 Baseline results148

As described in Section 2, for the first two tasks, we built models based on BERT whose resulting149

accuracies are summarized in Table 2. We initialized BERT with weights pretrained on the language150

modeling task, then fine-tuned the model as a binary classifier using the training partition. As151

expected, the Two-Choice Pick task is somewhat easier resulting in an accuracy of 80.2%, compared152

to the Detection task yielding an accuracy of 73.1%.153

For the generative task, we built two different models: The first based on the traditional neural machine154

translation (NMT). For the implementation we used the OpenNMT [14] library. No tuning of the155

model was performed relying on parameters that proved effective in traditional NMT settings [14].156

The second baseline model adopted recent work on structural neural summarization [9](SNS). For157

this model, we performed grid-based hyperparameter search. Our task was similar in nature to158

the MethodDoc task from Fernandes et al, however the sizes of the datasets and the language used159

are different. Our dataset was smaller in size and built from Python code. Both models achieved160

similar results for ROUGE-1 F score, while the SNS model had a lower ROUGE-2 F score, leaving161

considerable room for improvement.162
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Model ROUGE-1 F score ROUGE-2 F score
NMT 0.31 0.19
SNS 0.30 0.13

Table 3: Performance of caption generation models.

4 Conclusion163

We introduced a dataset called CodeCaption which comprises two classification tasks and one164

generative task, connecting function source code to their documentation. We focused on data science165

libraries to ensure good code/documentation quality. We believe that CodeCaption will be a useful166

resource to study machine learning techniques for various applications, such as semantic code167

understanding, documentation generation, learning with limited data, and language modeling for168

code. Furthermore, due to its limited size but focused domain, the CodeCaption dataset can be useful169

in studying aspects of transfer learning and domain adaptation in programming code.170
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A Supplemental Material
We present here just a few samples from the dataset to illustrate the type of tasks we constructed. Our
intention was to submit the dataset as supplementary material, however the submission website did not
seem to allow for such an option.

A.1 Task 1: Determine true captions
Code:

def g e t _ p k g _ i n f o ( pkgname , d i r s =None ) :
from numpy . d i s t u t i l s . npy_pkg_conf ig import r e a d _ c o n f i g
i f d i r s :

d i r s . append ( g e t _ n p y _ p k g _ d i r ( ) )
e l s e :

d i r s = [ g e t _ n p y _ p k g _ d i r ( ) ]
re turn r e a d _ c o n f i g ( pkgname , d i r s ) \ n "

Positive Caption

Re tu rn l i b r a r y i n f o f o r t h e g i v e n package .

Note that the caption contains the word library which does not appear in the actual code.
Code:

def g e t _ p k g _ i n f o ( pkgname , d i r s =None ) :
from numpy . d i s t u t i l s . npy_pkg_conf ig import r e a d _ c o n f i g
i f d i r s :

d i r s . append ( g e t _ n p y _ p k g _ d i r ( ) )
e l s e :

d i r s = [ g e t _ n p y _ p k g _ d i r ( ) ]
re turn r e a d _ c o n f i g ( pkgname , d i r s ) \ n "

Negative Caption

I f s t a t i c o r s h a r e d l i b r a r i e s a r e a v a i l a b l e
t h e n r e t u r n t h e i r i n f o d i c t i o n a r y .

Even the negative caption contain the word library. For a human, the fact that the code does not seem to
contain any information on static or shared is a signal that this caption has a lower chance of being the
correct one.

A.2 Task 2: Select correct code caption out of two candidates
Code:

def _ w a r n _ i f _ d e p r e c a t e d ( key ) :
d = _ g e t _ d e p r e c a t e d _ o p t i o n ( key )
i f d :

i f d . msg :
p r i n t ( d . msg )
w a r n i n g s . warn ( d . msg , Fu tu reWarn ing )

e l s e :
msg = " ’{ key } ’ i s d e p r e c a t e d " . format ( key=key )
i f d . r e m o v a l _ v e r :

msg += ( ’ and w i l l be removed i n { v e r s i o n } ’
. format ( v e r s i o n =d . r e m o v a l _ v e r ) )

i f d . rkey :
msg += " , p l e a s e use ’{ rkey } ’ i n s t e a d . "

. format ( r key =d . rkey )
e l s e :

msg += ’ , p l e a s e r e f r a i n from u s i n g i t . ’

w a r n i n g s . warn ( msg , Fu tu reWarn ing )
re turn True

re turn F a l s e

219
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Caption A (positive):

Checks i f ‘ key ‘ i s a d e p r e c a t e d o p t i o n and i f so , p r i n t s a warn ing .

Caption B (negative):

i f key i d d e p r e c a t e d and a r e p l a c e m e n t key d e f i n e d , w i l l r e t u r n t h e
r e p l a c e m e n t key , o t h e r w i s e r e t u r n s ‘ key ‘ a s − i s

A.3 Task 3: Generating caption text, given code
Code:

def u p d a t e _ t r _ r a d i u s ( De l t a , a c t u a l _ r e d u c t i o n , p r e d i c t e d _ r e d u c t i o n ,
s tep_norm , b o u n d _ h i t ) :

i f p r e d i c t e d _ r e d u c t i o n > 0 :
r a t i o = a c t u a l _ r e d u c t i o n / p r e d i c t e d _ r e d u c t i o n

e l i f p r e d i c t e d _ r e d u c t i o n == a c t u a l _ r e d u c t i o n == 0 :
r a t i o = 1

e l s e :
r a t i o = 0

i f r a t i o < 0 . 2 5 :
D e l t a = 0 . 2 5 * s tep_norm

e l i f r a t i o > 0 . 7 5 and b o u n d _ h i t :
D e l t a *= 2 . 0

re turn Del t a , r a t i o

Caption:

Update t h e r a d i u s o f a t r u s t r e g i o n based on t h e c o s t r e d u c t i o n .

Note that the concept trust region does not appear in the actual code and it would be hard, if not impossible,
to be generated automatically. The function name contains a shortcut for it in the form of tr.

220
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