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Abstract

The growing computational needs of many large scale machine learning applica-
tions have motivated the need for better JIT Fusion and graph manipulation tools
that are able to improve utilization or stretch the on-chip memory capabilities
through algorithmic tricks such as pipelining and recomputation. While there is
strong evidence that these techniques can help keep up with the computational de-
mands, they are typically hand written and require domain expertise in the internals
of machine learning frameworks, GPU programming, and computational graph
manipulation. Recent work, such as AutoTVM, FlexFlow, or Dali have shown that
many of these optimizations can be automatically discovered and applied by the
framework without human labor or expertise. Unfortunately, many of the proposed
algorithms cannot handle fusion across entire deep networks or require hours of
auto-tuning, and as we remark in this paper, choosing what operations to fuse is
equally challenging. We investigate ways to address limitations to the scaling of JIT
Fusion and code generation through the addition of a more robust fusion boundary
detector and variable elimination during code generation key to machine learning
graph optimizations. We demonstrate the impact of these changes by showing how
JIT Fusion and graph optimizations are able to accelerate deep Transformers and
RNNs by improving the Dali framework and compiler. . We compare our approach
to TensorFlow, TensorFlow with XLA, and PyTorch, and observe a 1.23− 2.13×
speedup over TensorFlow, and 1.08− 1.92× speedup over PyTorch.

1 Introduction

The exponential rise in computational requirements in the largest machine learning experiments
[1] presents an important challenge for future machine learning systems that wish to keep up with
demand. One solution to improving hardware utilization comes through the use of optimizations such
as pipelining [2] or gradient checkpointing [3, 4], and the use of task-optimized code via autotuning
[5] or model-based code generation [6, 7, 8]. In order to benefit from these improvements, human
labor and expertise is needed to implement pipelining, tradeoff memory and computation when
recomputing, while autotuning requires hours of profiling [7, 5, 9]. Learning or specifying a model
has emerged as a portable and fast option for adapting optimizations to new cases without human
intervention or significant retraining or search time [10, 7, 6]. However, the search-based techniques
in Dali [6] have only been demonstrated on static CNNs, where a greedy JIT Fusion strategy can lead
to poor operation coupling and slower execution. Furthermore, code generation relies on an A* [11]
algorithm whose complexity grows exponentially relative to search depth.

In this work, we propose to improve Dali’s optimization capabilities by introducing a smarter JIT
Fusion strategy. We also enable Dali to discover and eliminate redundant variables during code
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generation to shrink the search space. We empirically validate the scalability of these changes on a
CNN, Transformer, and mLSTM. Concretely our key contributions are the following:

1. We show how to scale JIT Fusion and code generation to larger models and find that this
approach now outperforms PyTorch and TensorFlow. A new fusion strategy lets us find
useful boundaries in the computation graphs. This change enables support for deeper
networks while finding practical boundaries to prevent naive coupling of operations.

2. We add discovery and elimination of loop variables to code generation A* [11] search process
in Dali, enabling it to shrink the solution search space by several orders of magnitude and
handle the larger kernels found in Transformers and mLSTMs.

3. We provide results showing cached graph optimization reduces by a factor of 20− 257×
the transformation cost, suggesting graph optimizations are applicable to dynamic graphs
ranging from static CNNs to Transformers and RNNs.

2 A* Fused CUDA Kernel Generation

2.1 Approach overview

Fusing operations together and generating task-specific code is a powerful tool for accelerating
computation graphs by removing temporary variables and reducing slow memory movement [12,
13, 14]. In this work we build upon the JIT Fusion optimizations in Dali’s compiler [6], which
rely on having each operation indicate whether they are capable of generating code that can be
concatenated and compiled into a larger fused kernel. In this prior work, JIT Fusion operates in two
stages: (1) combine a series of operations into a larger compilation unit, (2) make parallelism and
design decisions during code generation to compile a fast kernel.

In the first stage, to find a JIT subgraph to compile, Dali considers connected subtrees of the full
computation graph composed of JIT-able expressions. If the parent of a JIT-able expression is also
JIT-able it will combine the two operations into a single computation unit through fusion. The
combined set of operations can now be thought of as a single operation. This process is repeated until
all JIT-able expressions are fused to their neighbors.

The second stage collects all loops and code design choices from the nodes inside the JIT subgraph.
A model of the GPU’s memory and parallelism informs an A* search [11] through different ways of
designing the code ranked by a cost function similar to the approach taken by [15, 16].

Through this approach it is possible without human intervention to obtain efficient code for operations
composed of many primitives such as Softmax, Layer Norm [17], Batch Norm [18], Attention [19, 20],
etc. However, as we remark in this work (Figure 1), combining operations in a greedy fashion (stage 1)
leads to two significant problems: (1) the code generation (stage 2) solution space grows exponentially
with the number of variables, and (2) the generated code becomes over-constrained and cannot be
properly parallelized.

2.2 Fusion strategy

When constructing computation graphs, all parent-child relations involving JIT-able operations are
candidates for fusion. Using fusion, we can write Softmax, Attention, CrossEntropy, or any other
numerical operations using primitives such as addition, subtraction, division, reductions, etc. and
let the code generation system deal with how to plan, reuse, store, and combine these operations to
compute the result. However, when planning our computation, we discover many constraints on the
parallelism options for each reduction or assignment loop. In cases where we choose to fuse many
operations together, we reach over-constrained situations that lead to hardware under-utilization.

Avoiding excessive constraints and choosing the right subsets of operations to fuse is crucial for
performance and utilization. In many cases, commonly factored operations such as loss computation,
normalization, or affine transformations involve 1-3 inputs. An entire computation graph might
actually involve 100s of unique inputs and weight matrices. Since many of these operations are
connected through parent-child relationship, we are tempted to fuse 10s to 100s of operations into a
single compilation unit to reduce the number of kernels used. We argue that excessive fusion has
several downsides: (1) with more stages in the computation, new constraints on parallelism arise,
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Figure 1: Impact of Fmax heuristic on runtime
and memory when training a Transformer.

Table 1: Optimization Overhead (% Total)
Step CNN Transformer mLSTM
Optimize 0.64% 0.11% 0.052%
CTa 1.88% 1.88% 2.69%
Hash 2.33% 1.56% 1.71%
Compute 95.85% 96.44% 95.54%

aCached Transformation

Table 2: Runtime & Memory Usage (MB)

Framework Time (s) / Epoch (µ± σ) MB / Step

Task CNN - MNIST

Dali w/o JIT Fusion 1.29± 0.0050 376.62
Dali 1.11± 0.0034 363.38
PyTorch 2.14± 0.0037 913.00
TensorFlow 2.37± 0.0239 1178.00
TensorFlow + XLA 1.53± 0.0368 959.00

Task Transformer - 1 Billion Word

Dali w/o JIT Fusion 12.518± 0.5702 9165.89
Dali 8.735± 0.0464 4276.50
PyTorch 9.476± 0.2425 4003.76
TensorFlow 11.123± 0.1893 4059.63

Task mLSTM - Amazon Reviews

Dali w/o JIT Fusion 95.326± 0.1528 9581.12
Dali 93.342± 0.0889 7102.13
PyTorch 114.868± 0.0240 4967.00
TensorFlow 115.120± 0.1336 4363.00
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Figure 2: sparse_softmax_cross_entropy con-
straint graph.

leading in some cases to non-performant code, (2) the additional loops and variables increase the
search space for code generation dramatically, (3) the cap on CUDA kernel launch arguments places
an upper bound on the largest fused kernel, or requires compacting arguments during kernel launch.

We propose a simple heuristic that is computed greedily to find smaller subsets of operations to fuse:

1. Fuse JIT operations bottom-up; record how many unique input arrays they require.

2. If the fusion of a new JIT operation would increase the number of unique inputs past
the maximum number Fmax, create a new compilation unit with this operation as a leaf.
Otherwise, continue extending.

We measure empirically the effect of Fmax on runtime, memory consumption, and number of
executed operations when training a Transformer [20] and report our findings in Figure 1. As
expected, increasing Fmax leads to more aggregation of JIT operations, and a decrease in the number
of executed operations. Fusion decreases memory consumption by allowing chaining of operations
without temporary variables. As described earlier, fusing too many operations together can lead to
non-performant code as is visible with Fmax = 6, where runtime jumps from 11 to 470 seconds.
Surprisingly, we observe a runtime Goldilocks principle: setting Fmax to 3 gives the best results1.

2.3 Variable Coupling and Elimination

A common problem Dali faces when handling large scale models is generating kernels involving many
loops, since loop count exponentially grows the search space. Many of the variables in these loops

1We see this effect repeated for the mLSTM and CNN.
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have constraints and dependencies that make them redundant, thus by coupling their assignments
with other variables we can reduce the search space.

Loop redundancy exists implicitly: two iterations over the same batch dimension of an array will be
constrained to run on the same block to respect the order of read and writes. The most efficient use of
our GPU resources will involve these loops sharing the same parallelism strategy (e.g. use blocks
or threads in both cases). We can make this implicit coupling explicit by looking at all parent-child
relationships in our constraint graph and derive which variables are actually redundant2.

The value of variable coupling and elimination is visible when computing the cross entropy between
a set of labels and logits, a commonly used operation. Chaining probs = softmax(logits) and
sparse_cross_entropy(probs, labels) involves only two inputs logits and labels, so all
operations can be fused under the Fmax condition. After looking for reuse and using temporary
storage, 4 assignments are used, and 14 loops can be parallelized. Dali annotates the loops with data
dependencies to discover constraints (see Figure 2). In this example broadcast operations perform out
of order access on their input. Because a different block might have written to these inputs during
evaluation, “block parallelism” is disallowed in the loops connected to broadcast. The search space
starts with 4 million solutions, and drops to 512 after detecting that 7 loops are coupled and can be
ignored. Guided search examines 155 candidates and reaches a faster solution than the one written by
in PyTorch and TensorFlow, using the same scheduling as one written by human programmers 3.

3 Results

We investigate the scalability and benefits of using a fusion strategy and variable elimination on
neural network training tasks through a C++ implementation of Dali [6]. We summarize our timing
experiments regarding graph transformation on 3 tasks and architectures: image classification with
a CNN on MNIST (28x28 grayscale), subword language modeling with a Transformer [20] , and
character language modeling using the mLSTM from [21]. We measure memory usage and runtime
per epoch over (1) 100 epochs of training a CNN, (2) 10 epochs of training a Transformer, and (3)
10 epochs of an mLSTM. Full hyperparameters and setup given in Appendix A. We compare six
configurations: Dali with and without JIT Fusion, TensorFlow 1.13.1 with and without XLA4, and
PyTorch 1.1 [22]. We report our results in Table 2 and find that we always obtain a speedup over
TensorFlow and PyTorch. Specifically we see a 1.92/2.13× speedup over PyTorch/TensorFlow with
a CNN, a 1.23/1.23× speedup over PyTorch/TensorFlow with an mLSTM, and a 1.08/1.27 speedup
over PyTorch/TensorFlow using a Transformer.

We time fine-grained steps of the system in Table 1 (exact timings in Appendix B). Hashing plus
cached transformation is ≈ 20-257× faster than the initial optimization pass. Optimization overhead
remains modest across models.

4 Conclusion

We have shown how improvements to Dali’s compiler allow it to scale to deeper networks and
outperform existing computational frameworks on a CNN, Transformer, and mLSTM. These gains
can be attributed to two new capabilities for scaling JIT Fusion and graph optimizations to large
computational graphs where the abundance of fusion opportunities can cripple greedy computation
graph compilers. The first capability involves the addition of JIT Fusion boundaries based on a simple
heuristic that accelerates the execution of a CNN, Transformer, and mLSTM. We hypothesize that
controlling the number of input arrays in a kernel is correlated with the likelihood of introducing
incompatible parallelism constraints, which would force the generation of slower code. The second
capability is the discovery and elimination of variables in the kernel prior to performing an A* search
for the most parallel solution. In prior work [6], the number of variables could grow to 50 or more,
leading to intractably large search spaces. We show how detecting loop variable redundancy lets us

2We detect loop redundancy by checking if two loops are descendants of each other, have the same symbolic
size, and equal access to using threads or blocks.

3Leading “batch” dimensions, threads elsewhere.
4XLA support is currently experimental, so we were only able to obtain results with XLA on the CNN

example. The Transformer and mLSTM segfault after compilation.
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shrink the search space by 6 orders of magnitude, enabling code generation in deeper networks where
more operations fuse.

As future work, we have shown the importance of fusion boundaries, and we expect a data-driven or
learnt policy following [23, 24, 7] would perform even better at choosing which operations to fuse.
We also see in similar subgraph detection5 an opportunity to massively improve optimization reuse.
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A Hyperparameters

In this section we include the CNN architecture in Table 3, and hyperparameters for the experiments: CNN
in Table 4, Transformer in Table 5, and mLSTM in Table 6. All experiments are run on a 12-core 3.60GHz
Intel i7-6850K CPU with an NVIDIA Titan X Pascal, with all frameworks using CUDA 10.1 and CuDNN 7.5.1
primitives [1].

Table 3: CNN Architecture
Layer Window/Strides Input channels Output channels

Convolution + Relu (5, 5)/(1, 1) 1 64
MaxPool (2, 2)/(2, 2) 64 64
Conv + Relu (5, 5)/(1, 1) 64 64
Convolution (2, 2)/(2, 2) 64 64
FC + Relu 3136 1024
FC + Softmax 1024 10

Table 4: CNN Hyperparameters
Dataset MNIST 28x28
Batch Size 256
Optimizer SGD

Table 5: Transformer Hyperparameters

Dataset 1 Billion Word [2]a

Timesteps 100
Batch Size 32
Optimizer SGD
Hidden Size 512
Intermediate Size 1024
Attention Heads 4
Number of Layers 8
Activation GELU [3]
Examples/epoch 2048
Steps/epoch 64

aWe use the languagemodel_lm1b32k problem
from tensor2tensor [25].

Table 6: mLSTM Hyperparameters

Dataset Amazon Reviews [4]
Timesteps 256
Batch Size 32
Optimizer SGD
Hidden Size 4096
RNN Weight Norm Yes
Output Weight Norm No
Vocabulary Size 256
Embedding Size 64
Examples/epoch 2048
Steps/epoch 64

B Timing Results

Timing results when measuring overhead for optimization steps given in Table 7

Table 7: Optimization Overhead Time/Call (µ± σ)
Step CNN Transformer mLSTM
Optimization 41.11ms ± 320µs 183.3ms ± 1.91ms 794.9ms ± 10.3ms
Cached Transformation 106.31 µs ± 1.00µs 3.041ms ± 8.50µs 40.56ms ± 150µs
Expression hash 53.36 µs ± 0.160µs 2.520ms ± 7.03µs 25.80ms ± 74.5µs
Computation 4.366ms ± 14.3µs 155.8ms ± 3.25ms 1.439s ± 57.8ms
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