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Abstract

Storage systems rely on predicting future workload behavior for making decisions
in components such as caches, block allocators, and prefetchers. However, they are
often oblivious to the applications using them, and rely on features such as access
frequencies or offsets. This limits the prediction accuracy they can achieve.
We propose a new approach to prediction in storage systems, inspired by recent
multi-task learning successes in NLP. Instead of relying on low-level features,
we propose to train a machine learning model on unstructured application-level
features that are already available in distributed tracing systems, widely deployed
in data centers. While these features are predictive, the long-tailed, heterogeneous
and dynamic nature of data center workloads means that training such models is
expensive and needs to be repeated when workloads shift or the prediction task
changes. We address this problem through a multi-task model that jointly learns
how to perform different storage-related tasks. The aspiration is that when a new
scenario is encountered, the model can be fine-tuned to the new task with a small
number of samples instead of data-intensive end-to-end training.
We present an instance of this approach, based on the Census distributed tracing
framework and a shared multi-task Transformer model underpinning 4 task-specific
models. We demonstrate that this shared model is stable over time, and can be
co-trained to perform all four tasks. We believe that this approach represents a new
strategy for ML in storage systems and shows that storage prediction tasks that
have traditionally been treated as separate can share information.

1 Introduction

Storage systems account for a significant portion of resources in data centers. This includes storage
servers with flash or spinning disks [1], caches [2], distributed file systems [3, 4], and higher-level
data management systems [5, 6]. Oftentimes, these services build upon one another and applications
access a wide array of different storage services, resulting in complex interactions between them. In
addition, warehouse-scale computers have a long tail of applications with a diverse range of storage
access behaviors. This complexity makes it challenging to maximize the efficiency of any particular
storage service, as doing so requires the system to reason about the application’s behavior.

Storage services have long relied on hand-tuned heuristics to make decisions, such as when to admit
or evict an entry from a cache [7], how to place data on different storage tiers based on access
patterns [8] or predicting future access patterns for prefetching [9, 10]. These decisions are often
made by policies that use information available at the storage level, such as sequences of access
offsets and interarrival times. These policies are commonly tuned to achieve high efficiency for the
set of workloads the service encounters, and may be specifically tuned for particularly important
applications (e.g., databases). However, hand-optimization is infeasible for the long tail of data center
workloads, which necessitates an automated approach that incorporates application-level information.
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One solution is for the user to supply application-level hints, such as explicit prefetches [11]. Adding
such hints offers users fine-grained control over system behavior, but suffers from two shortcomings:
First, they add complexity to the software stack, requiring highly system-specific interfaces for their
propagation and execution, which translates into technical debt and abstraction violations. Second,
wrong or outdated policies can lead to regressions in system behavior. An alternative approach is to
instead use application-level information that is already available in the system. Modern warehouse-
scale computers often run distributed tracing frameworks [12, 13, 14] designed to attribute resource
usage, diagnose bugs in distributed systems or collect traces to be analyzed and replayed at a later
point. Data attached to storage requests by these systems captures a large amount of application-level
context such as the services that a request travelled through before it reached the storage layer.

We focus on one such framework, Census (and its open-source variant OpenCensus [15]). Census
enables profiling and resource accounting for distributed systems. It provides a tagging API that
allows services to generate key-value pairs (Census Tags), which are automatically propagated with
all downstream requests and can be used to understand complex interactions. A side-effect of this
instrumentation is that by the time a request reaches a storage system, its accumulated Census tags
encode rich context, including the path it took through the distributed system. However, exploiting this
information is challenging. First, the data itself is schemaless and unstructured, and can contain any
string the programmer chooses. Second, data centers run a diverse and dynamic set of applications,
which means that models need to learn a long tail of different application behaviors and be robust to
changes in the system. This indicates that periodic retraining is required but that a large amount of
data is needed for the model to cover the full set of applications and general behaviors.

This problem is reminiscent of natural language processing: While a large amount of data is required
to learn general knowledge about all concepts in the world, multi-task learning can be used to only
perform this full training once and then fine-tune the model for different prediction tasks, using a
much smaller amount of data. We adapt the same approach for storage problems: We propose a
method for training a single, shared model that is trained on a long time period of storage traces. This
type of model could then be rapidly fine-tuned to different tasks, such as to make caching decisions
with different cache sizes or under shifting workload patterns. We show the promise of this approach
by demonstrating a model that generalizes to unseen examples and is therefore more robust over time
than a static lookup table, and that works across four different decision tasks in storage systems.

These results suggest that there is information that can be shared between different storage predictions
problems that have traditionally been treated as separate. This work is a starting point for integrating
more powerful ML techniques into storage systems, by jointly learning a single model underpinning
multiple storage systems. We believe that further research in this area is warranted.

2 Background

Related Work: There is a large amount of work on predictions in storage systems, including
cache policies [16], placement decisions [8], garbage collection scheduling [17] and predictive
prefetching [18]. While most approaches only use storage-level information such as access patterns,
prior work has incorporated application-level information. For example, speculative execution has
been used to generate prefetch hints [19, 20]. Other work uses decision trees to generate file storage
policies from file metadata [21]. These approaches work for individual applications but cannot
support thousands of interacting services in a data center, with a long tail of behaviors.

Neural approaches address long-tail behavior by being able to handle exponentially many possible
unseen examples while being compact. Jozefowicz et al. [22] find that while Kneser-Ney smoothed
5-gram models [23] are competitive with LSTM models on common words, LSTM models are
significantly better at modeling uncommon words in the tail. Neural branch predictors [24] are able to
exploit much longer histories using resources that grow linearly with respect to history length. Recent
work on neural prefetching [25] makes the observation that the same properties can be exploited to
learn memory access patterns (but does not use application-level features).

We build on work in multi-task learning, which is similar to transfer learning and trains a single model
on multiple related tasks to learn a more general representation. These techniques are important for
building a single model that can adapt to workload shifts and new prediction tasks with little data, and
have driven recent successes in natural language processing such as BERT [26], a Transformer [27]
model that is first pre-trained on unsupervised text and then fine-tuned to multiple tasks.
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Figure 1: Model Architecture with three Census key-value pairs and four tasks.

Census/OpenCensus: Data center applications are often composed of a large number of services
that communicate via message passing [28]. Services often have multiple clients using them (e.g.,
different webservices accessing a database) and rely on multiple different downstream services (e.g.,
the database service might connect to storage servers and an authentication service). This makes
analysis and resource accounting challenging: When we encounter a request from a database, should
it be attributed to the database or one of the upstream services using it?

(Open)Census is a distributed tracing library that provides insights into such systems. It traces requests
as they travel through the system. Census allows applications to attach key-value pairs (Census Tags)
that are automatically propagated through all systems and allows a service to determine the context of
a request that it receives (e.g., for resource accounting). One of the underlying insights of our paper
is that this same information represents powerful features for reasoning about the distributed system:
Existing tags already capture properties of the workload that a programmer deemed important, and
programmers could select new tags based on what they believe would be predictive features.

3 Prediction Tasks and Model Architecture

We use sampled traces from a production cluster and target 4 storage prediction tasks. These tasks
represents common prediction problems that different types of storage systems need to solve.

• Read-Write Ratio: Predicting the ratio of read vs. write operations is helpful for placing
data. Read-only files may be candidates for replication while write-only files may be
best stored in a log structure. We assign each file a category based on the quintile of
reads/(reads+ writes). Files without reads or writes are assigned a separate class.

• Cacheability: Caches exist in storage systems throughout all layers and often operate at
the granularity of fixed-size blocks. One cache-related prediction task is whether to admit
a given block into the cache, based on whether it is cacheable. We assign each (128 KB)
block access request a binary cacheability label, based on whether this particular block will
be re-accessed within some fixed time window (chosen to be 2 hours in our case).

• File Lifetime: File lifetime predictions can help storage systems reduce fragmentation and
garbage collection work [29]. We predict lifetimes at a per-file basis and group lifetimes
into exponentially-spaced buckets: [0, 1s), [1s, 4s), . . ., [4096s,∞).

• Final File Size: Knowing the final size of a file at the time it is allocated can improve
allocation decisions. We sum together the number of bytes written to a file, and group them
into buckets [0, 1KB), [1KB, 4KB), . . ., [8MB,∞).

Our multi-task model is based on the Transformer [27] architecture. Its self-attention mechanism
makes it highly suited to processing sets [30] such as unordered collections of Census Tags. The
model input is a Census Tag collection, a set of Census Tag key-value pairs associated with each
storage request. We train a single model that maps a tokenized Census Tag collection to multiple
classification outputs, one for each task. Given a Census Tag collection X = {x1, x2, . . . , xn} where
xi is the ith (unordered) key-value string pair, we pass each xi through a single embedding layer
φ : N → Rm to create a set of encoded Census Tags Y = {φ(x1), φ(x2), . . . , φ(xn)}. Y is then
passed into the Transformer encoder M : Rn×m → Rn×m and its output averaged to produce the
shared output embedding S =

∑n
i=1M(Y )i where S ∈ Rm. For each task, we pass S through a

task-specific multi-layer perceptron to produce classification outputs. During training, we optimize
the sum of cross entropy losses across all tasks.
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Figure 2: Stability of the lookup table vs. the ML model (trained on 10 days, evaluated on 2 months).
Accuracy counts the percentage of requests that are in the lookup table and have the same label.

Figure 3: Training curves for simultaneously co-training our multi-task model on four storage tasks
(trained on 10 days, evaluated on 10 days starting 2 months later).

4 Evaluation and Discussion

Static Lookup Table Baseline and Filtered Training: Census Tag collections follow a long-tailed
distribution. The most common Census Tag collections are stable over a long period of time and
comprise a sizable fraction of all examples. The tail is more diverse and fast-changing, with many
Census Tag collections only appearing rarely. It is therefore possible to store the stable “head” in a
small static table. The table maps Census Tag collections to the most commonly observed class for
that particular collection. This approach allows for a training setup and deployment scenario where
the most common Census Tag collections are handled using a static table and the long tail is handled
by training an ML model. We simulate this approach by filtering out Census Tag collections that
occur more than 2,000 times in the dataset. We also consider a simple baseline using a static lookup
table as a stand-in for the model, and show how the model generalizes far better to the tail.

Transformer model generalizes much better than a static lookup table: We used an initial 10-
day training period to build a static lookup table and train the Transformer model, and then evaluated
the accuracy on subsequent 10-day periods over two months. Figure 2 illustrates how the static
lookup table degrades considerably on all 4 tasks. The main source of prediction error in the static
table approach is its inability to predict on unseen combinations of Census tags, i.e. shifts in P (X).
Another (less common) source of error are changes in the conditional label distribution P (Y |X).
While nearest neighbor techniques could form a stronger baseline, they require storing many training
examples and querying them on-the-fly, which leads to significant storage and querying overheads.

Multi-Task models can simultaneously learn different storage tasks: Figure 3 shows that our
Transformer model can simultaneously learn the different storage tasks. The ability to train the model
on multiple tasks simultaneously represents the foundation of fine-tuning the model to unseen tasks.
Being able to do so in few steps is important since workloads shift frequently. We can envision using
this in an online training approach that incrementally fine-tunes a pre-trained model using a few
gradient updates on the most recent data to allow adaptation at a finer granularity.

Future Work: Our tokenization approach, while simple, could be further improved through subto-
kenization of Census tag values (i.e., segmentation into common vs. unique parts). Further, one
of the main practical challenges of deploying ML in production systems is the computational cost
and inference latency. ML techniques such as distillation [31] and quantization [32] can create
significantly cheaper models with minimal accuracy loss. We speculate that future multi-task learning
models will achieve higher accuracy than single-task models, and that multi-task pre-training will
speed up model retraining and the training of new tasks.

Conclusion: While our research is preliminary, we think that it presents a new approach to applying
ML to storage problems and future work should investigate opportunities to jointly learn different
storage tasks that are currently treated separately.
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