
Predictive Precompute with Recurrent Neural
Networks

Hanson Wang, Zehui Wang, Yuanyuan Ma
Facebook Inc.

Menlo Park, CA 94025
{hansonw, wzehui, yyma}@fb.com

Abstract

In both mobile and web applications, a common technique to improve user interface
response times is to precompute data ahead of time for specific features. However,
simply precomputing data for all user and feature combinations is prohibitive at
scale due to both network constraints and server-side computational costs. There-
fore it is important to accurately predict per-user feature usage to minimize wasted
precomputation (“predictive precompute”). In this paper, we describe the novel
application of recurrent neural networks (RNNs) for predictive precompute in
large-scale production systems that serve billions of users. We demonstrate that
RNN models improve prediction accuracy, eliminate most feature engineering
steps, and reduce the computational cost of predictions by an order of magnitude.

1 Introduction

The relationship between application latency and user engagement is well-known; improving the
responsiveness of an application by just a few seconds can result in significant increases in user
engagement due to the limited attention span of users [1].

In modern applications, the most common source of latency is data fetching. One common strategy
to improve responsiveness from the user’s perspective is predictive precompute: we can predict the
probability that a user will access a feature given the current application state and their historical
access logs. We then only precompute data when the probability surpasses a certain threshold,
significantly reducing the proportion of wasted prefetches. The key to this approach is accurately
predicting user access probabilities, which translates well into a standard machine learning problem.

In this paper, we propose the use of recurrent neural networks as a novel improvement over previous
methods. We prove these benefits in production through an online experiment where RNNs yield a
7.81% increase in successful prefetches over a traditional model.

Finally, we highlight the benefits of the RNN computation model from a systems perspective. By
eliminating the time-based aggregations used in traditional models in favor of a single hidden state,
the overall computational cost of serving predictions is reduced by a factor of 10x.

Related Work Existing literature describes relatively simple models to estimate access probabilities
in the context of prefetching, through the use of CDF-based formulas, linear regression and decision
trees [2, 3, 4]. However, traditional methods all rely on the combination of different time-based
aggregation features (e.g. “the number of accesses within the last 7 days”). Aggregation features
require significant effort to tune (feature engineering) and can be computationally expensive to
serve in production. To address these problems, we are able to draw inspiration from research in
recommendation systems based on recurrent neural networks (RNNs) due to their innate ability to
model sequential data. For example, [5] describe the use of RNN-based recommender systems for
video recommendations based on user actions.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Datasets Two datasets are used in this paper to evaluate our methods. Each dataset contains a
sequence of user sessions grouped by user. For each user, a session i is defined by an access flag
Ai ∈ {0, 1} denoting if a feature access occurred within the session, as well as context variables Ci.

MobileTab is a real-world dataset where predictive precompute is being deployed at Facebook,
containing 60.8M sessions from 1M users over a period of 30 days. We selected a tab on the
Facebook mobile application with moderate usage, defined sessions as the 20-minute window
following application startup, and logged an access if the tab was accessed within the time window.
Context variables include the current time, the unread notification count for the tab, as well as the
active tab at session startup.

Mobile Phone Use (MPU) is a public dataset published by Pielot et. al. [6], which contains 2.34M
sessions for 279 mobile phone users over a period of 30 days. We borrow heavily from the work by
Katevas et. al. [7] and define sessions as the 10-minute window after each notification is received,
recording an access if the notifying application was opened. Context variables include the current
time, the current screen state (off/on/unlocked), the notifying application name, and the most recently
opened application name.

2 Modeling Predictive Precompute

2.1 Definitions

For each dataset, we have a chronologically ordered sequence of n logged historical sessions for
each user with contexts C1, ..., Cn and access activity A1, ..., An. Let t1 < t2 < · · · < tn denote the
UNIX timestamp of each session. For session i, we would like to estimate the probability of an access
given all known information past and present, i.e., P (Ai | C1, A1, C2, A2, ..., Ci−1, Ai−1, Ci).

2.2 Traditional Models

A simple baseline model (the percentage-based model) is to return the current access percentage
based on all historical sessions for each user: P (Ai) =

∑i−1
j=1Aj/(i− 1) with P (A1) = 0.

To construct logistic regression (LR) [8] and gradient boosted decision tree (GBDT) [9] models, we
construct a feature vector for each session by one-hot encoding categorical variables and taking the
sum and average of previous values of Ai across several time windows (28 days, 7 days, 1 day, 1
hour). We obtain context-aware versions of each aggregation by filtering to previous sessions with
matching contexts (e.g. those with the same day of the week). We also incorporate the time difference
since the last session and last access as features, also with some context-aware versions.

2.3 Recurrent Neural Networks

Whereas traditional models treat the access prediction for individual sessions as independent events,
the innovation of recurrent neural networks (RNNs) is to process events in a sequential manner while
introducing a persistent hidden state to carry over information from previous events. In this section,
we describe how an RNN can be used to process a sequence of sessions.

Feature extraction. Each step of the RNN model must receive a fixed-length feature vector. We
construct a feature vector fi from each Ci by one-hot encoding categorical variables. To incorporate
time into the model, we also input ∆ti = ti − ti−1 to the recurrent network at each step, where
∆t1 = 0. Due to the uneven distribution of time differences, we transform time elapsed features by
bucketizing them based on their logarithm (T (∆ti)). Finally, when updating the hidden state we also
incorporate the access label Ai. Note that no aggregation features are computed.

Modeling delays. To model real-world behavior accurately we must take into account two sources
of delays: (1) that the ground truth Ai cannot be determined until the session ends (recall that each
session has a fixed length, e.g. 20 minutes), and (2) that obtaining hi is not instantaneous (i.e. it takes
some time, ε). To address this we define a lag parameter, δ, equal to the session length plus ε. To
enable hidden updates and predictions to be processed separately, we break up the traditional RNN
unit into an updater (RNNupdate) which produces new hidden states, and a feed-forward network
(RNNpredict) which produces predictions as output.

2



GRU GRU
h1 h2

h0

MLP

f1h0

P(A1)

t
t1 t2

t1 + δ

T(0)

MLP

P(A2)

t2 + δ

f2h1 T(t2 - t1)

A1f1 T(∆t1) A2f2 T(∆t2)

MLP

P(A3)

f3h1 T(t3 - t1)

t3

t3 + δ

GRU

A3f3 T(∆t3)

h3

Figure 1: Modeling sequences of access logs with recurrent neural networks. Multilayer perceptron
(MLP ) units produce output probabilities at time ti, while hidden state updates occur through the
gated recurrent units (GRU ) at time ti + δ (after a delay). Note that because t3 occurs before t2 + δ
it cannot make use of h2 and uses h1, t1 as inputs instead.

Putting everything together, we can define a sequence of hidden states h0 = 0, h1, ..., hn, with a
recurrence relation. Figure 1 illustrates the flow of data through the model.

hi = RNNupdate(hi−1, [fi;Ai;T (∆ti)])

To obtain a prediction P (Ai), we use RNNpredict with the latest known hidden vector accounting
for update lag, denoted hk, where k is the maximum k such that tk < ti − δ (if no such k exists, then
we let k = 0 and ti − tk = 0):

P (Ai) = RNNpredict(hk, [fi;T (ti − tk)])

2.4 Model Architecture

For RNNupdate we compared GRU [10], LSTM, and tanh architectures and found that 128-
dimensional GRUs provide the best performance. For RNNpredict, a simple architecture where
the input vector and hidden vector are concatenated and passed into a single-layer 128 neuron feed-
forward multilayer perceptron (MLP) provides good performance. We find that an element-wise
multiplication of the hidden vector with a latent factor [5] derived from the context provides a
meaningful improvement:

h′i = hk ◦ (1 + L([fi;T (ti − tk)]))

where k is the latest known index as described previously and L is a linear transformation matrix.

We can summarize the formulation as:

P (Ai) = σ(b2 +W2 ·ReLU(b1 +W1[h′i; fi;T (ti − tk)]))

Here σ denotes the sigmoid function while b1, b2 represent constant bias vectors andW1,W2 represent
linear transformation matrices.

3 Experiments and Evaluations

3.1 RNN Training

RNN models are trained using PyTorch v1.11 using the Adam optimizer with a learning rate of 1e−3.
We also include a 20% dropout layer in the middle of the MLP to prevent overfitting.

1https://github.com/pytorch/pytorch/releases/tag/v1.1.0

3

https://github.com/pytorch/pytorch/releases/tag/v1.1.0


To calculate training loss we average the log loss over all sessions from the last 21 (out of 30) days;
we find that this consistently yields better evaluation metrics than training on the full 30 days.

The MobileTab dataset is randomly split into training and test groups by user, with 90% of users in
the training group and 10% of users in the test group, and we train on minibatches of 10 users. With
1M users only one training epoch is required for convergence.

Due to the small number of users in the MPU dataset, we opt for an alternative k-fold cross-validation
setup with k = 4 and train a separate model on each split without minibatches for 8 epochs. Evaluation
metrics are measured over the combined cross-validated predictions (from all 4 folds).

3.2 Offline Experiments

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Recall
Pr

ec
is

io
n

%Based

LR

GBDT

RNN

Figure 2: PR curves for MobileTab.

Figure 2 shows the full precision-recall curve
across all tested models for MobileTab. We eval-
uate predictions on the last 7 days of testing data
in each dataset to get a better estimate of per-
formance in production, because the majority of
users already have a full 30 days of history.

To obtain a single numerical metric for model
comparison we use the threshold-invariant area
under the precision-recall curve (PR-AUC). Ta-
ble 1 compares the PR-AUC across all tested
models and datasets. Table 2 compares the re-
call for each model at a fixed 50% precision,
where the difference between models becomes
more apparent.

While RNNs have a clear advantage in model
performance and significantly reduce serving computational costs, it requires more training time and
more data. The MPU dataset contains around 2.34M sessions, and takes about 10 hours to complete
8 training epochs. In contrast, GBDT models can be trained in minutes with just 104 data points.

Table 1: PR-AUC values.
Model MobileTab MPU

%Based 0.470 0.591
LR 0.546 0.683
GBDT 0.578 0.686
RNN 0.596 0.767

Table 2: Recalls at 50% precision.
Model MobileTab MPU

%Based 0.413 0.811
LR 0.596 0.906
GBDT 0.616 0.917
RNN 0.642 0.977

3.3 Online Experiments

For the MobileTab dataset, we productionized the RNN model described above to replace an existing
production GBDT model at Facebook. We will explain our infrastructure and experiment results in
this section.

Context variables for each user are sent to a stream processing system similar to Apache Kafka2,
tagged by a unique session ID. Tab accesses are also sent to the same system with a matching session
ID. Events are buffered by session ID, and after a timer corresponding to the session length fires, the
context Ci and access flag Ai are computed. We then retrieve the most recent hidden state for the
user hi and execute the GRU part of the model to calculate and store a new hidden state. The most
recent hidden state for each user (a 128-element floating point vector) and session timestamp are
stored in a real-time data store similar to Redis3. We use TorchScript4 to run MLP and GRU models
in a remote execution environment.

2https://kafka.apache.org
3https://redis.io
4https://pytorch.org/docs/stable/jit.html

4

https://kafka.apache.org
https://redis.io
https://pytorch.org/docs/stable/jit.html


At session startup time, the most recent hidden state along with the current context variables are
retrieved and sent through the MLP part of the model to calculate an access probability p. We eagerly
precompute and retrieve the tab contents if p is greater than a fixed threshold, chosen to target a
precision of 60%. This corresponds to a recall of about 51.1% in the RNN model vs. 47.4% in the
GBDT model. This comes out to a 7.81% increase in “successful prefetches” (i.e. accesses that were
successfully prefetched).

0 10 20 30

0.2

0.4

0.6

Days since experiment start

PR
-A

U
C

RNN
GBDT

Figure 3: Online PR-AUC for MobileTab.

We report several observations after monitoring
the behavior of the productionized model over
a period of about 90 days:

Relative production resources. In large-scale
system one significant benefit is the incremental
nature of hidden updates: with manual feature
engineering we need to store and retrieve the en-
tire sequence, but with RNNs we only need the
last known hidden vector. RNN models are in-
deed more resource intensive — empirically the
TorchScript model is about 9.5x more compu-
tationally intensive than a GBDT model. How-
ever, in practice, the most compute-intensive
component is actually the serving of aggregate
access percentages and time elapsed features
that GBDT model needs, which requires about two orders of magnitude more compute than the
model computation itself. Aggregation features are computed using a stream processing service in
combination with a key-value store. However, we still need to keep track of every combination of
context values in order to serve context-dependent aggregations, which may result in thousands of
unique keys per user. With billions of users, this multiplies into trillions of keys.

In contrast, with the RNN model, the storage footprint is limited to a single 128-dimensional (512-
byte) hidden vector for each user, which results in only one key-value lookup per prediction. By
decreasing both the storage footprint and request volume, this reduces the overall serving computa-
tional cost by about 10x in practice. Furthermore, neural network quantization methods can also be
applied to store single bytes instead of floating-point numbers for each dimension.

Cold start behavior. In our online experiment, we compared two groups of users starting with an
empty history to compare the warmup behavior between the GBDT and RNN models. We find that
it takes about 14 days for the RNN model to stabilize, and that it is consistently superior than the
GBDT model. Figure 3 displays the online PR-AUC for the first 30 days of the online experiment.

Long-term model quality and stability. Despite that the training data only spans 30 days, we see
that the empirical precision and recall are consistent with the results obtained from offline experiments,
and continue to maintain the same level of quality (with no sign of degradation) over a 90 day period.
This suggests that the hidden states produced by the RNNs are stable over long-term periods.

4 Conclusion

We present an overview of the predictive precompute problem as well as a selection of datasets
for comparison, including a real-world use case at Facebook. We demonstrate the novel use of
recurrent neural network (RNN) models to achieve state-of-the-art results in this domain through
offline experiments. In addition to achieving superior precision and recall metrics, RNNs significantly
reduce the need for manual feature engineering due to the automatic encoding of historical information
into hidden states.

We show that these advantages carry over to an online production environment at Facebook, where
RNN models maintain consistent performance over an extended 90-day period. We highlight how
RNN models decrease the computational cost of serving models by an order of magnitude by encoding
all prior history into an incrementally updatable and compact hidden state.

In closing, we hope that the techniques described in this paper make it easier for other applications
outside of Facebook to utilize predictive precompute.

5



References
[1] Oliver Palmer. How Does Page Load Time Impact Engagement? Op-

timizely Blog, 2016. URL https://blog.optimizely.com/2016/07/13/
how-does-page-load-time-impact-engagement/.

[2] Yichuan Wang, Xin Liu, David Chu, and Yunxin Liu. Earlybird: Mobile prefetching of social
network feeds via content preference mining and usage pattern analysis. In Proceedings of the
16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc
’15, pages 67–76, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3489-1. doi: 10.1145/
2746285.2746312. URL http://doi.acm.org/10.1145/2746285.2746312.

[3] Abhinav Parate, Matthias Böhmer, David Chu, Deepak Ganesan, and Benjamin M. Marlin.
Practical prediction and prefetch for faster access to applications on mobile phones. In Proceed-
ings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’13, pages 275–284, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1770-2.
doi: 10.1145/2493432.2493490. URL http://doi.acm.org/10.1145/2493432.2493490.

[4] Iqbal H. Sarker, A. S. M. Kayes, and Paul Watters. Effectiveness analysis of machine learning
classification models for predicting personalized context-aware smartphone usage. Journal
of Big Data, 6(1):57, Jul 2019. ISSN 2196-1115. doi: 10.1186/s40537-019-0219-y. URL
https://doi.org/10.1186/s40537-019-0219-y.

[5] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H. Chi. Latent
cross: Making use of context in recurrent recommender systems. In Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining, WSDM ’18, pages 46–54, New
York, NY, USA, 2018. ACM. ISBN 978-1-4503-5581-0. doi: 10.1145/3159652.3159727. URL
http://doi.acm.org/10.1145/3159652.3159727.

[6] Martin Pielot, Bruno Cardoso, Kleomenis Katevas, Joan Serrà, Aleksandar Matic, and Nuria
Oliver. Beyond interruptibility: Predicting opportune moments to engage mobile phone users.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1(3):91:1–91:25, September 2017.
ISSN 2474-9567. doi: 10.1145/3130956. URL http://doi.acm.org/10.1145/3130956.

[7] Kleomenis Katevas, Ilias Leontiadis, Martin Pielot, and Joan Serrà. Continual prediction of
notification attendance with classical and deep network approaches. CoRR, abs/1712.07120,
2017. URL http://arxiv.org/abs/1712.07120.

[8] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[9] Chen, T. and Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 785–794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi:
10.1145/2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785.

[10] Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. Empirical evaluation of gated recurrent neural
networks on sequence modeling. CoRR, abs/1412.3555, 2014. URL http://arxiv.org/abs/
1412.3555.

6

https://blog.optimizely.com/2016/07/13/how-does-page-load-time-impact-engagement/
https://blog.optimizely.com/2016/07/13/how-does-page-load-time-impact-engagement/
http://doi.acm.org/10.1145/2746285.2746312
http://doi.acm.org/10.1145/2493432.2493490
https://doi.org/10.1186/s40537-019-0219-y
http://doi.acm.org/10.1145/3159652.3159727
http://doi.acm.org/10.1145/3130956
http://arxiv.org/abs/1712.07120
http://doi.acm.org/10.1145/2939672.2939785
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555

	Introduction
	Modeling Predictive Precompute
	Definitions
	Traditional Models
	Recurrent Neural Networks
	Model Architecture

	Experiments and Evaluations
	RNN Training
	Offline Experiments
	Online Experiments

	Conclusion

