
Real-time Policy Distillation in
Deep Reinforcement Learning

Yuxiang Sun
Computer Science and Engineering Department

University of South Carolina
syuxiang@email.sc.edu

Pooyan Fazli
Department of Computer Science

San Francisco State University
pooyan@sfsu.edu

Abstract

Policy distillation in deep reinforcement learning provides an effective way to
transfer control policies from a larger network to a smaller untrained network
without a significant degradation in performance. However, policy distillation
is underexplored in deep reinforcement learning, and existing approaches are
computationally inefficient, resulting in a long distillation time. In addition, the
effectiveness of the distillation process is still limited to the model capacity. We
propose a new distillation mechanism, called real-time policy distillation, in which
training the teacher model and distilling the policy to the student model occur
simultaneously. Accordingly, the teacher’s latest policy is transferred to the student
model in real time. This reduces the distillation time to half the original time or
even less and also makes it possible for extremely small student models to learn
skills at the expert level. We evaluated the proposed algorithm in the Atari 2600
domain. The results show that our approach can achieve full distillation in most
games, even with compression ratios up to 1.7%.

1 Introduction

Recent research has demonstrated the power of reinforcement learning to learn effective control
policies in various domains. One breakthrough is the deep-Q network (DQN) [7]. In this approach,
applied to the Atari domain, consecutive screenshots of games are fed as input to the network, and the
network is expected to predict the best action that maximizes the expected future reward. Using this
approach, a well-trained agent can outperform human-expert players in most Atari games. However,
DQN models are usually cumbersome, which prevents their applications to compute- and power-
constrained devices, such as drones and cell phones, that require efficient networks. To this end, policy
distillation techniques have been widely investigated [10, 13, 8] for their ability to transfer a policy
to a compressed model with acceptable performance loss, primarily using distribution regression.
However, most existing policy distillation methods require a long time to complete the distillation
process, fail in some task domains or in providing full distillation, and have an approximation capacity
that limits the model compression ratio.

In this work, we mainly focus on the quality of policy distillation and address the challenges of time
and approximation capacity. First, we propose a new policy distillation method, in which training the
teacher and distilling the policy to the student are carried out simultaneously in real time. This method
is different from typical policy distillation approaches [10], in which the teacher model is trained,
and then the student is trained via distillation under the supervision of the teacher model. Second,
instead of optimizing the student’s policy only based on the output distribution regression between the
teacher and student models [10], we import a self-learning term in the loss function to help regulate
the student’s behavior in an additional way. Third, beyond the supervision via distribution regression,
we employ another channel of supervision by asking the student to imitate how the teacher sets

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



reasonable targets. Finally, we investigate different variations of the loss function and their effects on
the quality of the distillation process.

2 Real-time Policy Distillation

In policy distillation, one or more deep reinforcement learning models are trained as expert models
that can provide supervision to student training. Distillation techniques such as prediction regression
[3] and feature regression [1, 9] have been comprehensively explored in different aspects of image
classification. In deep reinforcement learning, KL divergence has proved to be the most effective
method to date [10]. It is formulated as

LKL(θ(S)) =
N∑
i=1

softmax(
q
(T )
i

τ
)ln

softmax(
q
(T )
i

τ )

softmax(
q
(S)
i

τ )

 , (1)

where qTi and qSi are q-values approximated by the teacher model and the student model, respectively.
θS represents weights in the student model, and N is the number of actions. The softmax function
is used to normalize the q-values that can be taken as a probability distribution or confidence of
the actions. The temperature τ is used to adjust the degree of similarity of the distributions that is
expected to be achieved. By the definition of KL divergence, the teacher’s distribution is assumed to
be the true distribution and used to supervise the student.

In the real-time distillation framework, both student and teacher models use the exact same architec-
ture of the DQN. They both maintain two identical deep networks, a target network and a prediction
network. Only the teacher interacts with the environment and determines the action to take, and the
corresponding experiences are stored into a replay buffer. For each training iteration, the teacher and
student models share the same data sampled from the replay buffer as a training set, and their weights
are updated simultaneously and independently. The teacher’s policy is optimized by minimizing the
loss of the Bellman error [7], which we call the DQN loss:

LDQN = Es,a[ri+1 + γ ×max
a
Q(si+1, a, θ

−
i )︸ ︷︷ ︸

target

−Q(si, a; θi)︸ ︷︷ ︸
prediction

]
2
. (2)

In contrast, the student’s loss is a combination of the DQN loss and the KL divergence:

Lstudent = LKL + LDQN . (3)

We name the DQN loss in the student’s loss function as self-learning, as it encourages the student
to find the most suitable way of shaping itself instead of strictly imitating the experts’ behavior, as
even a very small model still has some approximating ability. When distillation is not informative
enough or lacks high-quality supervision, applying knowledge only via the KL divergence channel
would lead to a less effective distillation. In image classification [4, 2], a combination of the student’s
own classification and the distillation loss provides a reference from different aspects. In our case,
according to our observation, the student’s weight distribution changes more drastically than that of
the teacher during the training process. As the student adjusts itself to handle various states, self-
learning is assumed to identify the right direction for updating the weights. Even when informative
supervision is available, self-learning can still provide additional information, similar to self-adaptive
adjustment or correctness.

2.1 Imitation via Target-term

The target term in the teacher’s DQN loss is decoupled as

Y
(T )
i = ri+1 + γ ×max

a
Q(T )(si+1, a; θ

(T ),−
i ). (4)

Here, maximization is used to determine the action as well as estimate the q-value using the same
approximator, that is, the target network. Inspired by the theoretical analysis in Double-DQN [12, 11],

2



overestimation of the action value is more likely to occur in an insufficiently flexible approximation
and may blow up via accumulation during training. In this prior work, double approximators were
used to eliminate this penalty. Intuitively, the student’s self-learning accumulates more errors than
a teacher model during training, so it is necessary to incorporate double estimators to reduce it.
Therefore, inviting the teacher’s target network to be the second estimator in the student model that
decides which action to take is a valid option. With this, the student’s target term in its DQN loss is
changed to be

Y
(S)
i ≡ ri+1 + γ ×Q(S)(si+1, argmax

a
Q(T )(si+1, a; θ

(T ),−
i ); θ

(S),−
i ). (5)

Note that the argmax function extracts the action chosen by the teacher. In other words, the student
uses weights θ(T ),−

i in the teacher’s target network to determine the action and uses its own weights
θ
(S),−
i to estimate the q-values. The student is required to imitate the teacher’s choices in the target

estimation, a method that we call imitation. Conversely, if the student takes the form of Equation 4, it
is called no-imitation. Imitation via the target is a second channel of knowledge transference, beyond
KL divergence.

2.2 Forward KL vs. Reverse KL

The uncertainty in action prediction is significant in some tasks, even when the agent has mastered
some real skills. Consider the following extreme case, in which all actions are selected with equal
probability both in the teacher and student models. The KL divergence tries to match the two random
distributions. To deal with the uncertainty problem in image classification, Malinin and Gales [6]
adopted reverse KL divergence (RKL) instead of forward KL divergence (FKL) when given highly
uncertain data in classification. Back to reinforcement learning, the prediction uncertainty is generally
high and causes more random action choices, which increases data uncertainty and confuses the
student further. The reason is that the student learns from the teacher’s demonstration too. RKL
originates from the posterior belief [5] and can be decomposed to reverse cross-entropy (RCE) and
self-entropy:

LRKL(θ(S)) =
N∑
i=1

−p(S)i ln(p
(T )
i )︸ ︷︷ ︸

RCE

−
N∑
i=1

−p(S)i ln(p
(S)
i )︸ ︷︷ ︸

Entropy

,
(6)

where p is the probability over actions, and N is the number of actions. If there is no distinction
between q-values, all actions are approximately equiprobable and selected with a uniform probability
of 1/N . The gradient of RKL for a single logit is

∂RKL

∂q
(S)
i

=
1

τ
(
1

N
− (−p(S)i ln(p

(S)
i )︸ ︷︷ ︸

Entropy

)). (7)

According to Equation 7, the gradient update only depends on the changes in the student’s entropy,
ignoring the teacher’s supervision. This mechanism can effectively prevent harmful knowledge
transfer via distillation, because if the teacher’s prediction ability degrades catastrophically and no
constructive supervision is available, then the student is less affected by the teacher’s predictions,
thus stabilizing the student’s learning. Theoretically [6], in contrast to forward KL divergence, which
is zero-avoiding and drives the approximated distribution to be spread over each action, RKL is zero
forcing, which allows students to allocate zero probability to other actions as long as the student is
confident with the predicted best action, consequently reducing the effect of the teacher.

However, uncertainty does not always damage learning effectiveness. According to our empirical
study, the games that are more aware of state values, such as Space Invaders, are less affected by
the application of FKL or RKL. This means that any action may yield a similar reward, so there is
little impact due to prediction uncertainty. For games like Ms. Pacman, where each action choice
determines the outcome, policies are more effectively distilled via RKL if high uncertainty exists.

3



Table 1: Training results by applying the imitation method for different model sizes. Scores calculated
by the percentage of teacher’s scores (%). RTPD: Real-time Policy Distillation, PD: Policy Distillation
[10]. Net1, Net2, and Net3 are the student models.

Net1 Net2 Net3

PD RTPD PD RTPD PD RTPD

Max Max Mean Max Max Mean Max Max Mean

FKL

Ms.Pacman 102.5 95.2 112 86.4 96.9 92.3 96.2 97.7 58.2
Qbert 129.6 80.8 234 130.6 76.5 320.7 107.9 55.5 101.9
Beamrider 87.1 47.4 35.8 85.3 62.6 37. 75.2 47.6 15.91
Pong 100.6 104.8 97.5 103.7 98 100.7 96.9 100.8 99.1
SpaceInvaders 78.6 101.9 95.1 49.4 100.6 100.5 20.9 94.2 95.4
Breakout 105.6 73.8 100.1 98.1 91.5 97.3 78.6 69.5 91.1
Enduro 142.4 103.9 116.4 141.3 106.5 105.1 117.1 109.2 120.3

RKL

Ms.Pacman 102.5 130.5 112.9 86.4 120.3 111.5 96.2 124 99.2
Qbert 129.6 91.8 306.7 130.6 86.6 229.3 107.9 75.6 233.7
Beamrider 87.1 93 108.6 85.3 79 83.6 75.2 60.1 59.1
Pong 100.6 105.9 113.3 103.7 104.6 114.4 96.9 101.8 100.5
SpaceInvaders 78.6 108.9 93.7 49.4 105.3 97.4 20.9 102.6 98.4
Breakout 105.6 102.9 106.9 98.1 99.5 101.3 78.6 101.2 107.7
Enduro 142.4 99.9 104.0 141.3 101.4 104.3 117.1 100.6 103.6

3 Experiments and Results

To assess the performance of the proposed distillation approach, we selected seven games, one
teacher model, Teacher={32, 64, 64, 512}, and three student models [10, 13] with different capacities,
Net1={16, 32, 32, 256}, Net2={16, 16, 16, 128}, and Net3={16, 16, 16, 64}. The first three numbers
represent the number of filters in the convolutional layers, and the last is the number of neurons in
a fully connected layer. Students’ corresponding compression ratios, in terms of the total number
of parameters, are 25.2%, 6.7%, and 3.7%. To save training time, in each experiment, one teacher
model and multiple student models with different sizes are constructed in the same graph, and all
students share the same teacher. All training and evaluation settings are exactly the same as in DQN
[7] except for the option of null-op. Ideally, after the teacher’s convergence, additional iterations
may help the student to consolidate accomplishments, but when training time is limited, we force all
models to stop at the same epoch. Note that we have much fewer training epochs than does Policy
Distillation (PD) [10], only as a rough reference, and the average training time is 200 hours for each
experiment.

If perfect distillation performance of our algorithm is achieved, we expect the student’s learning
pace to keep up with the teacher’s in real time and the student to outperform the teacher with respect
to maximum and mean scores. All models are evaluated sequentially every 25,000 updates (called
epochs) by playing up to 30 episodes. Limited by computation resources, we only consider 100
epochs. Besides comparing the student’s maximum score over the whole training as a percentage
of the teacher’s maximum score, we also calculate the mean of all score percentages in the last 10
epochs.

In Table 1, we compare the mean percentages of our proposed method with Policy Distillation (PD)
[10], as the mean value is more eligible to reflect the distillation performance. It is observed that the
real-time architecture, combined with the imitation method, guarantees almost 100% distillation for
most games, especially in terms of the mean value. Also, the distillation is less affected by the model
capacity, and even the smallest model, Net3, is still able to achieve a performance comparable to

4



Table 2: Comparison of imitation and no-imitation with FKL (% of teacher).

Net4 Net5

Imitation No-imitation Imitation No-imitation

Max Mean Max Mean Max Mean Max Mean

Ms.Pacman 91.7 74.8 81 63.9 96 79.1 84.4 73.7
Space 99.8 116.4 94.9 106.6 94.2 86 87.9 89.3
Breakout 96.3 102.2 81 103 92.1 100.4 87.5 100

Net1. We also conducted experiments applying RKL in contrast to FKL, which verifies the benefit of
RKL.

In Table 2, two extra models, Net4={8, 8, 16, 64} and Net5={8, 16, 8, 64} were added to assess the
advantage of imitation in very small models. The compression ratios are 3.2% and 1.7%, respectively.
The result shows the imitation method truly helps improve the overall distillation quality for the three
games.

4 Conclusion

Our real-time distillation architecture reduces the distillation time significantly and transfers knowl-
edge to extremely small models without much degradation in performance. The investigation of the
imitation method and two forms of KL divergence may contribute some insights into the improvement
of distillation quality and other reinforcement learning tasks, such as robot control and planning.

References
[1] Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D Lawrence, and Zhenwen Dai. Varia-

tional information distillation for knowledge transfer. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 9163–9171, 2019.

[2] Micah Goldblum, Liam Fowl, Soheil Feizi, and Tom Goldstein. Adversarially robust distillation.
arXiv:1905.09747, 2019.

[3] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv:1503.02531, 2015.

[4] Xiao Jin, Baoyun Peng, Yichao Wu, Yu Liu, Jiaheng Liu, Ding Liang, Junjie Yan, and Xiaolin
Hu. Knowledge distillation via route constrained optimization. arXiv:1904.09149, 2019.

[5] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv:1312.6114,
2013.

[6] Andrey Malinin and Mark Gales. Reverse kl-divergence training of prior networks: Improved
uncertainty and adversarial robustness. arXiv:1905.13472, 2019.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[8] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv:1511.06342, 2015.

[9] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv:1412.6550, 2014.

[10] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv:1511.06295, 2015.

5



[11] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[12] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI),
pages 2094–2100, 2016.

[13] Haiyan Yin and Sinno Jialin Pan. Knowledge transfer for deep reinforcement learning with
hierarchical experience replay. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence (AAAI), pages 1640–1646, 2017.

6


	Introduction
	Real-time Policy Distillation
	Imitation via Target-term
	Forward KL vs. Reverse KL

	Experiments and Results
	Conclusion

