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Abstract

We present a deep reinforcement learning approach to minimizing the execution
cost of neural network computation graphs in an optimizing compiler. Unlike earlier
learning-based works that require expensive online training steps, we propose a
“zero-shot learning” approach that trains an optimizer offline that successfully
generalizes to previously unseen graphs. This allows our approach to produce
high-quality execution decisions on real-world TensorFlow graphs in seconds
instead of hours. We consider two optimization tasks for computation graphs:
minimizing running time and peak memory usage. In comparison to an extensive
set of baselines, our approach achieves significant improvements over classical and
other learning-based methods on these two tasks.

1 Introduction

Recent years have seen the emergence of optimizing compilers for Deep Learning (DL)—such
as Glow [24], MLIR [3], TVM [8], and XLA [27]—that aim to efficiently map neural network
computation graphs expressed in high-level frameworks like TensorFlow [5] onto hardware. The
complex discrete decisions made by these compilers are themselves a natural target for studying how
machine learning can assist in solving combinatorial optimization problems [7].

In this work, we look at applying learning to jointly optimize what are currently two passes in the
XLA compiler: operation-to-device assignment and static scheduling of operations within a device,
where a device may be a GPU or tensor processing unit (TPU). These optimization problems have
been studied classically as task scheduling and are known to be NP-hard in typical settings [26, 18].

The setting of an optimizing compiler imposes several challenging constraints on the learning
methodology that can be employed. The solution must 1) be fast enough to avoid unacceptably large
compilation delays, 2) work across diverse families of computation graphs, and 3) scale to large
graphs and (hence) decision spaces. The runtime constraints led us to adopt a zero-shot learning
approach where only a single inference pass is needed when a new task (i.e., optimization problem)
is given. These constraints also preclude the use of expensive simulators or hardware evaluations;
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Fig. 1: Given a computation graph, we run a GNN to predict beta distributions for each node. These
distributions are used by BRKGA to generate mutants in the evolution process. The evolution process
decodes chromosomes into placements (device assignments) and schedules for the computation graph
and evaluates their fitness using a cost model.

instead we follow the typical approach in optimizing compilers of constructing a coarse cost model
to evaluate execution decisions and optimizing with respect to it, as done in [1, 17]. To satisfy the
second and third requirements, the learned optimizer must be able to generalize to previously unseen
computation graphs.

Existing work does not adequately address this setting. [22, 21] apply RL to the op-to-device
assignment problem, although their solution does not generalize across computation graphs and
hence requires hours for each instance. Their results were recently improved by [2] who demonstrate
limited generalization within families of neural network architectures. AutoTVM [8] applies learning
to optimize low-level implementations for tensor ops but does not consider op-to-device assignment
or scheduling of entire programs. In a related domain, [20] learn scheduling algorithms for data
processing clusters.

The key idea of our approach (see Figure 1) is to augment an existing proven classical heuristic
with learning; we combine a Graph Neural Network (GNN) [10] with a heuristic based on Biased
Random-Key Genetic Algorithms (BRKGA) [14]. The GNN takes a computation graph as input and
returns parameters for BRKGA’s mutant-sampling distributions. BRKGA is run using these input-
dependent distributions, searching for good solutions via the cost model. Since explicit supervision is
not available, the GNN is trained using REINFORCE [28] using BRKGA’s final objective value as the
reward. Our approach, “REINFORCE-based Genetic Algorithm Learning” (REGAL), significantly
improves solution quality of the heuristic and allows zero-shot generalization to new graphs. The
results are promising, yet they remain to be validated by integration back into a compiler like XLA.

This work makes the following contributions: 1) We are the first to demonstrate zero-shot learning
with broad generalization for optimizing real-world TensorFlow graphs on two separate tasks of
minimizing runtime and peak memory usage. 2) We demonstrate that BRKGA can be significantly
improved using GNNs. 3) Our approach is made possible by a dataset of 372 topologically distinct
real-world TensorFlow graphs, which is an order of magnitude larger than the datasets used in
previous work [22, 21, 9, 1]. 4) We present extensive comparisons with heuristic and exact (i.e.,
enumerative) baselines.

2 Approach

Figure 1 shows an overview of the pipeline for our approach. The next three subsections explain its
key components in more detail.

2.1 The problem setup

We consider a computation graphs as a collection of ops, each of which may produce or consume a
number of tensors, free of control flow. These are like Blocks in MLIR [4], but without execution
order specified. More concretely, for learning, we represent a computation graph as an attributed
multigraph G = (V,E), where, the nodes V correspond 1:1 to the ops, and the edges e ∈ E exist
from u to v for each tensor that op v requires that is produced by op u. As a tensor can be required
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by multiple ops, the correspondence from edges to tensors may be many to one. Each node v ∈ V
and edge e ∈ E has an attribute vector xv and xe. The attributes contain respective features, e.g.,
sizes of the tensors and runtime estimates of the ops.

We assume that we are given d homogeneous devices (like GPUs or TPUs) on which to execute the
computation graph. The set of decisions to be made are 1) which op to run on which device, and 2)
the order in which to run operations. In XLA, decisions 1) and 2) are currently made in separate
stages, yet here we consider them jointly. The two objectives considered are minimizing the execution
time of the graph and minimizing the peak memory use (the amount of memory needed to run the
graph). The objectives are evaluated based on a cost model; see the appendix for a description.

2.2 The BRKGA-based heuristic

We build our work on top of the BRKGA-based heuristic that is implemented in the XLA compiler to
compute within-device schedules, generalizing it to also compute op-to-device assignments. BRKGA
is a general meta-heuristic framework that has obtained state of the art results for a broad range of
combinatorial optimization problems [14, 13], making it a promising target to improve by learning.

Here we present only the aspects of the BRKGA-based heuristic relevant to discussing how we
extend it with learning, with some parts simplified; see the appendix for more details. In the
heuristic, solutions are encoded as vectors in [0, 1]|V |∗(d+1) called chromosomes. One entry per node
corresponds to the node’s scheduling priority, and the remaining d entries correspond to its affinity to
be placed on each of the d devices, values that are used in decoding the chromosome into schedules
and op-to-device assignments.

As a genetic algorithm, BRKGA generates random chromosomes called mutants within its search
procedure. Traditionally, each entry of these chromosomes is sampled uniformly at random from
[0, 1]. To provide knobs for learning, we generalize this so that each entry in the chromosome is
sampled from a beta distribution with its own parameters. We write the heuristic as a function
H(G,D) that returns the objective value of the best solution found for an input computation graph
G = (V,E) given a list of (d + 1) ∗ |V | beta distributions D = D1, D2, . . . , D|V |∗(d+1) used for
mutant sampling. Adjusting these distributions allows learning to guide the search.

2.3 Integrating learning with BRKGA

We use a model based on Graph Neural Networks (GNNs) [25, 19, 12, 10] to propose the instance-
dependent mutant-sampling distributions D to BRKGA. The learning model can be understood as a
contextual bandit that takes the computation graph as input and computes categorical distributions
over the choice of the beta distributions.

Each beta distribution Di has two parameters αi, βi ∈ R≥0. We discretize the possible values for
these parameters. The bandit must produce k = 2× (d+1)×|V | actions for each input G. The GNN
computes an embedding vector hv for each node v ∈ V . These node-level embedding vectors are then
fed into 2×(d+1) multi-layer perceptrons (MLP) to compute the logits for k categorical distributions.
After sampling α and β from these distributions, the corresponding beta distributions D are passed to
BRKGA. Thus, REGAL can be written as a function M(G) = H(G,D ∼ B(G)), where B is the
contextual bandit from which we sample the list of beta distributions D. In Reinforcement Learning
terminology, the sampled beta distribution parameters are the model’s actions. Observe that the action
space is different from graph to graph; The GNN-based bandit can adapt to graphs of varying sizes,
although it assumes that the value of d is fixed. Different models could be trained for different values
of d, although we did not try this.

BRKGA is run with the sampled beta distributions D for a fixed iteration limit, and the final objective
value is used to compute the reward. To make the reward values comparable across different graphs,
we divide the objective value M(G) = H(G,D ∼ B(G)) achieved on a graph G with action D, by
H(G,U), where U is the uniform random distribution, i.e., BRKGA without learning. Since we
want to minimize the objective, we define the reward as r(D,G) = −M(G)/H(G,U). So a reward
> −1 corresponds to an action that achieves a better objective value with learning.

We maximize the expected reward L = EG [p(D|G)r(D,G)], where EG is an expectation over
graphs in our training set. Learning is done by REINFORCE [28]. We add a scalar baseline b(G) for
reducing the variance of the gradient estimates.
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Table 1: % Gap from best known solution for various methods on the datasets. Results are averages
over test set graphs. Lower is better. Note: CP, an enumerative algorithm, is run for up to 24 hours
only to establish provably global optima (if possible) for evaluation purposes.

Algorithm TF Runtime test set TF Peak Memory test set Synthetic Runtime test set

CP 24hr 1.00% 8.06% 0.00%

GP + DFS 66.98% 14.77% 93.66%
Local Search 22.63% 7.24% 24.60%
BRKGA 5k 20.19% 7.98% 24.63%

Tuned BRKGA 16.40% 7.11% 20.76%
GAS 15.24% 7.67% 23.48%
IDRS 28.60% 12.39% 39.72%

REGAL 11.04% 4.44% 18.57%

3 Experimental results

In this section we describe the datasets, the baseline algorithms we compare to, and quantitative
evaluation of REGAL. BRKGA is run for 5k evaluations during training and test time. We optimize
for d = 2 devices.

3.1 Tasks and datasets

We consider two tasks, minimizing peak memory and minimizing running time, both on two homoge-
neous devices with 16 GiB of memory each and synchronous tensor transfers with zero cost (zero
latency and infinite bandwidth). We train a separate neural network for each task-dataset pair. Recall
that we are evaluating objectives on a cost model and not actual hardware.

We have collected a dataset of 372 topologically-unique real-world TensorFlow graphs by mining
machine learning jobs on Google’s internal compute cluster. These graphs are augmented by adding
multiplicative noise. The final TF runtime dataset has 16329 training, 5470 validation, and 5266
test graphs. The TF peak memory dataset has 22400 training, 7400 validation, and 7400 test
graphs. For reproducibility, we have generated released a synthetic dataset of computation graphs
with 10000 training, 1000 validation, and 1000 test cases at https://github.com/deepmind/deepmind-
research/tree/master/regal.

3.2 Baselines

We consider the following baselines: (1) a Graph Partitioning + Depth First Search (GP+DFS)
heuristic similar to the current approach in XLA that separates device assignments and scheduling
into two passes [6] (the GP algorithm is analogous to the Scotch [23] baseline used in [1]), (2) a Local
Search heuristic that starts with a random solution and greedily improves, (3) Graph-As-Sequence
Model (GAS): Like [22, 21], the graph is converted a sequence using a topological sort and then an
RNN predicts node-level distributions used by BRKGA, (4) BRKGA run for X thousand iterations
(BRKGA XK) with uniform sampling distributions, (5) BRKGA with hyperparameters tuned by grid
search (Tuned BRKGA), (6) Instance-dependent Random Search (IDRS) is the same as REGAL,
but BRKGA is replaced with only random sampling, (7) Constraint Programming (CP) [15], an
enumerative approach to establish provably global optima run for up to 24 hours. We fix the number
of cost model evaluations to 5,000 for algorithms (2)-(6).

3.3 Comparison to baseline algorithms

We compare algorithms by measuring the average percent gap from the best known solution. If CP
finishes within the time limit, it will always find the globally optimal solution. If not, one of the other
methods may result in the best known. We report geometric averages over test set graphs.

Table 1 compares REGAL to other algorithms on all three datasets. REGAL outperforms all the
baselines on all three tasks. It gives 1.38× and 1.6× larger improvements than the next best algorithm
on runtime and peak memory minimization tasks, respectively. REGAL reduces the gap from the
best known solution by about 1.8× with respect to BRKGA 5K on both TensorFlow test sets, and
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Fig. 2: (Left) Histogram of % improvements on the TensorFlow peak memory dataset for test graphs
on which REGAL is better (green) and worse (red) than BRKGA. Ties are omitted from the figure
for clarity but are included in the histogram percentage calculation. (Right) Average % improvement
over BRKGA 5K given by REGAL and BRKGA on the TensorFlow peak memory dataset as the
evaluation limit is increased.

by about 6× and 3.3× with respect to GP + DFS on the TensorFlow Runtime and Peak Memory
test sets, respectively. The synthetic test set shows similar results. The learned policy successfully
generalizes to previously unseen graphs, to the extent that a large fraction of the estimated room for
improvement over BRKGA 5K is captured by REGAL using the same evaluation limit.

Comparing REGAL directly with BRKGA, Figure 2 (left) shows histograms of % improvements in
peak memory achieved by REGAL over BRKGA 5K on the test sets. REGAL improves as much
as 54.3% over BRKGA, while the worst regression is 17.9%. To assess whether the improvements
provided by REGAL’s policy generalize to evaluation limits other than the one for which it was trained
(5K), we varied the evaluation limit used by both BRKGA and REGAL at test time. The results
are shown in Figure 2 (right). REGAL’s performance improves with more evaluations, confirming
that the policy generalizes to higher evaluation limits. Interestingly, even with 50,000 evaluations,
BRKGA is not able to match REGAL’s performance with just 5,000 evaluations!

BRKGA 5K’s average runtime on the test set is 0.87 seconds, while REGAL’s, with the same
evaluation limit, is 1.01 seconds. Surprisingly the difference is due to the additional cost of sampling
from beta distributions (which we did not optimize), not from the cost of evaluating the GNN.

4 Conclusions and future work

By training a GNN policy to predict input-dependent mutant sampling distributions for BRKGA,
REGAL successfully generalizes to new graphs, significantly outperforms all baselines in solution
quality, and computes solutions in about one second on average per TensorFlow test set graph.
REGAL’s speed and generalization ability show that it is possible to satisfy the challenging constraints
of designing learning techniques for optimizing compilers. Validation of REGAL with end-to-end
testing and generalizations for improving other compiler passes are natural next steps.
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A Appendix

A.1 Cost model

We provide a brief description of the cost model, its assumptions, and its limitations.

Given an assignment of ops to devices and a schedule (ordering) of the ops, our cost model simulates
the execution of the computation graph and computes the total runtime and the peak memory use.
It assumes runtime estimates for each op (e.g., given by a simulator [17]) and memory use of each
tensor (an assumption that holds in static compilers like XLA). The simulator tracks the lifetime of
the tensors on each device, freeing them from memory after all local consumers have run. Tensors
can be transferred across devices by synchronous (blocking) transfers.

The cost model does not permit rematerialization of tensors (as in [16]), nor does it account for
fragmentation when computing memory use. Additionally, we do not model asynchronous transfers,
which are an option on many systems. Despite these simplifications, the model yields slight variants
of problems that are known to be NP-hard [11].

A.2 BRKGA

In BRKGA, chromosomes in a population are encoded as n-dimensional vectors with entries in [0, 1]
for some fixed n. The goal of BRKGA is to find the chromosome that maximizes a given fitness
function f : [0, 1]n → R. BRKGA evolves its populations by first sorting the chromosomes by fitness
into elites and non-elites. The next generation of the population is composed of (1) the elites of the
previous generation, (2) children of the elites and non-elites generated by a cross-over procedure, and
(3) mutants sampled from a distribution D. In the standard application of BRKGA, D is a uniform
distribution over [0, 1]n. In our work, we learn D. Our use of BRKGA is standard [14] except for the
mutant sampling distribution.

Chromosomes are decoded into solutions as follows. Let d be the number of devices, o the number of
ops, and t the number of tensors. The chromosome encoding a scheduling solution has three distinct
parts: (1) o× d entries specifying op-to-device affinities; (2) o entries specifying scheduling priorities
for each op; (3) t× d entries specifying tensor-to-device priorities for transfers that may be needed.
Given a chromosome, op-to-device assignments are picked by maximum affinity. Transfer ops are
created as implied by the device assignments. We then obtain a schedule by performing a topological
sort over the ops given their tensor dependencies, breaking ties by using the corresponding node
priorities. When enforcing a memory constraint (e.g., 16 GiB per device), the fitness of a schedule is
encoded such that all memory-feasible schedules have better fitness than infeasible schedules. Part
(3) of the chromosome was omitted in the simplified discussion; we learn sampling distributions only
for parts (1) and (2).

A.3 Graph Neural Network Architecture

We reuse the notation introduced for the input computation graph G as defined in section 2.1.
Formally, given a graph G, the GNN computes representation vectors hT

v for each node v through
T rounds of iterative message passing. These hT

v ’s are then used to compute logits of the softmax
distributions, from which we sample the beta parameters:

h
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v ,
∑

e:et=v m
(t)
e +

∑
e:es=v m

(t)′

e

])
,

αi ∼ Softmax
(
MLPa,i%(d+1)

(
hT

b i+|V |−1
|V | c

))
βi ∼ Softmax

(
MLPb,i%(d+1)

(
hT

b i+|V |−1
|V | c

))
D =

{
beta(α1, β1), beta(α2, β2), . . . , beta(α(d+1)×|V |, β(d+1)×|V |)

}
(1)

Here, es is the source node of edge e and et is the target node. MLPn and MLPe are multilayer
perceptrons (MLPs) that encode node and edge attributes, MLPmsg and MLP′msg compute messages

along the edges in the edge direction (m(t)
e ) and the opposite direction (m(t)′

e ), MLPnode updates

8



node representations and [.] represents flat vector concatenation. After T rounds of message passing,
the representation for each node hv = h

(T )
v will contain information from the T -hop neighborhood

around v in the graph. MLPa,i’s and MLPb,i’s are shared across all nodes for computing the logits
of the beta parameter categorical distributions.

The scalar baseline b(G) is computed using a separate GNN, where after we obtained
the node representations hv, we aggregate across nodes and compute b(G) as b(G) =

MLPb

(
1
|V |
∑

v MLPg(hv)
)

.
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