
Apollo: Transferable Architecture Exploration

Anonymous Author(s)
Affiliation
Address
email

Abstract

The looming end of Moore’s Law and ascending use of deep learning drives the1

design of custom accelerators that are optimized for specific neural architectures.2

Architecture exploration for such accelerators forms a challenging constrained opti-3

mization problem over a complex, high-dimensional and structured input space with4

a costly to evaluate objective function. Existing approaches for accelerator design5

are sample-inefficient and do not transfer knowledge between related optimizations6

tasks with different design constraints (e.g. area budgets) or neural architecture7

configurations. In this work, we propose a transferable architecture exploration8

framework, dubbed APOLLO, that leverages recent advances in black-box function9

optimization for sample-efficient accelerator design. We use this framework to10

optimize accelerator configurations of a diverse set of neural architectures with11

alternative design constraints. We show that our framework finds high reward12

design configurations (up to 24.6% speedup) more sample-efficiently than a baseline13

black-box optimization approach. We further show that by transferring knowledge14

between target architectures with different design constraints, APOLLO is able to15

find optimal configurations faster and often with better objective value (up to 25%16

improvements). This encouraging outcome portrays a promising path forward to17

facilitate generating higher quality accelerators.18

1 Introduction19

The ubiquity of customized accelerators demands efficient architecture exploration approaches,20

especially for the design of neural network accelerators. However, optimizing the parameters of21

accelerators is daunting optimization task that generally requires expert knowledge [11, 28] since22

the search space is exponentially large while the objective function is a black-box and costly to23

evaluate. Constraints imposed on parameters further complicate the identification of valid accelerator24

configurations. Constrains can arise from hardware limitations or if the evaluation of a configuration25

is impossible or too expensive [29].26

To address the aforementioned challenges, we introduce a general architecture exploration framework,27

dubbed APOLLO, that leverages the recent advances in black-box optimization to facilitate finding opti-28

mal design configurations under different design constraints. We demonstrate how leveraging tailored29

optimization strategies for complex and high-dimensional space of architecture exploration yields large30

improvements (up to 24.6%) with a reasonably small number of evaluations (≈ 0.0004% of the search31

space). Finally, we study the impact of transfer learning between architecture exploration tasks with dif-32

ferent design constraints in further reducing the number of hardware evaluations. The following outlines33

the contributions of APOLLO, making the first transferable architecture exploration infrastructure:34

• End-to-end architecture exploration framework. We introduce and develop APOLLO, an35

end-to-end and highly configurable framework for architecture exploration. The proposed36

framework tunes accelerator configurations for a target set of workloads with a relatively small37

number of hardware evaluations. As hardware simulations are generally time-consuming, reducing38

Submitted to Machine Learning for Systems Workshop co-located with (NeurIPS 2020). Do not distribute.

the number of these simulations not only shortens the design cycle for accelerators, but also provides39

an effective way to adapt the accelerator itself to various target workloads.40

• Supporting various optimization strategies. APOLLO introduces and employs a variety of41

optimization strategies to facilitate the analysis of optimization performance in the context of42

architecture exploration. Our evaluations results show that evolutionary and population-based43

black-box optimization strategies yield the best accelerator configurations (up to 24.6% speedup)44

compared to a baseline black-box optimization with only≈ 2K number of hardware evaluations45

(≈ 0.0004% of search space).46

• Transfer learning for architecture exploration. Finally, we study and explore transfer learning47

between architecture exploration tasks with different design constraints showing its benefit in48

improving the optimization results and sample-efficiency. Our results show that transfer learning49

not only improves the optimization outcome (up to 25%) compared to independent exploration,50

but also reduces the number of hardware evaluations.51

2 Methodology52

Problem definition. The objective in APOLLO (architecture exploration) is to discover a set of feasible53

accelerator parameters (h) for a set of workloads (w) such that a desired objective function (f), e.g.54

weighted average of runtime, is minimized under an optional set of user-defined constraints, such55

as area (α) and/or runtime budget (τ).56

min
h,w

f(h,w)

s.t. Area(h)≤α
Latency(h,w)≤τ

(1)

The manifold of architecture search generally contains infeasible points [28], for example due to57

impractical hardware implementation for a given set of parameters or impossible mapping of workloads58

to an accelerator. As such, one of the main challenges for architecture exploration is to effectively59

sidestep these infeasible points. We present and analyze the performance of optimization strategies to60

reduce the number of infeasible trials in Section 3.61

Neural models. We evaluate APOLLO on two variations of MobileNet [33, 15] and five in-house neural62

models with distinct accelerator resource requirements. The neural model configurations, including63

their target domain, number of layers, and total filter sizes are detailed in Table 1. In the multi-model64

study, the workload contains MobileNetV2 [33], MobileNetEdge [15], M3, M4, M5, M6.

Table 1: The detailed description of the neural models, their domains, number of layers, parameter size in megabytes, and number
of MAC operations in million.

Name Domain # of layers Params (MB) # of MACs
MobileNetV2 [33] Image Classification 76 3.33 301 M
MobileNetEdge [16] Image Classification 93 3.88 991 M
M3 Object Detection 93 2.19 464 M
M4 Object Detection 111 0.42 107 M
M5 Object Detection 60 6.29 1721 M
M6 Semantic Segmentation 62 0.37 591 M
M7 OCR 56 0.30 5.19 M

65

Accelerator search space. In this work, we use an in-house and highly parameterized edge accelerator.66

The accelerator contains a 2D array of processing elements (PE) with multiple compute lanes and67

dedicated register files, each operating in single-instruction multiple-data (SIMD) style with multiply-68

accumulate (MAC) compute units. There are distributed local and global buffers that are shared across69

the compute lanes and PEs, respectively. We designed a cycle-accurate simulator that faithfully models70

the main microarchitectural details and enables us to perform architecture exploration. Table 2 outlines71

the microarchitectural parameters (e.g. compute, memory, or bandwidth) and their number of discrete72

values in the search space. The total number of design points explored in APOLLO is nearly 5×108.73

2.1 Optimization Strategies74

In APOLLO, we study and analyze the performance of following optimization methods.75

2

Table 2: The microarchitecture parameters, their type, and number of discrete values per parameter. The total number of design
points per each study is 452,760,000.

Accelerator Parameter # discrete values Accelerator Parameter # discrete values
of PEs-X 10 # of PEs-Y 10
Local Memory 7 # of SIMD units 7
Global Memory 11 # of Compute lanes 10
Instruction Memory 4 Parameter Memory 5
Activation Memory 7 I/O Bandwidth 6

Evolutionary. Performs evolutionary search using a population ofK individuals, where the genome76

of each individual corresponds to a sequence of discretized accelerator configurations. New individuals77

are generated by selecting for each individual two parents from the population using tournament78

selecting, recombining their genomes with some crossover rate γ, and mutating the recombined79

genome with some probability µ. Following Real et al. [31], individuals are discarded from the80

population after a fixed number of optimization rounds (‘death by old age’) to promote exploration.81

In our experiments, we use the default parametersK=100, γ=0.1, and µ=0.01.82

Model-Based Optimization (MBO). Performs model-based optimization with automatic model se-83

lection following [2]. At each optimization round, a set of candidate regression models are fit on the data84

acquired so far and their hyper-parameter optimized by randomized search and five fold cross-validation.85

Models with a cross-validation score above a certain threshold are ensembled to define an acquisition86

function. The acquisition is optimized by evolutionary search and the proposed accelerator configu-87

rations with the highest acquisition function values are used for the next objective function evaluation.88

Population-Based black-box optimization (P3BO). Uses an ensemble of optimization methods,89

including Evolutionary and MBO, which has been recently shown to increase sample-efficiency90

and robustness [3]. Acquired data are exchanged between optimization methods in the ensemble,91

and optimizers are weighted by their past performance to generate new accelerator configurations.92

Adaptive-P3BO is an extension of P3BO which further optimizes the hyper-parameters of optimizers93

using evolutionary search, which we use in our experiments.94

Random. Samples accelerator configurations uniformly at random from the defined search space.95

Vizier. An alternative approach to MBO based on Bayesian optimization with a Gaussian process96

regressor and the expected improvement acquisition function, which is optimized by gradient-free97

hill-climbing [14]. Categorical variables are one-hot encoded.98

We use the Google Vizier framework [14] with the optimization strategies described above for perform-99

ing our experiments. We use the default hyper-parameter of all strategies [14, 3]. Each optimization100

strategy is allowed to propose 4096 trials per experiment. We repeat each experiment five times with101

different random seeds and set the reward of infeasible trials to zero. To parallelize hardware simu-102

lations, we use 256 CPU cores each handling one hardware simulation at a time. We fruther run each103

optimization experiment asynchronously with 16 workers that can evaluate up to 16 trials in parallel.104

3 Evaluation105

Single model architecture search. For the first experiment, we define the optimization problem106

as maximizing throughput per area (e.g. 1
latency ×

1
area) for each neural model without defining107

any design constraints. Figure 1 depicts the cumulative reward across various number of trials.108

Compared to Vizier, Evolutionary and P3BO improve the throughput per area by 4.3% (up to 12.2% in109

MobileNetV2), on average. In addition, both Evolutionary and P3BO yield lower variance across multiple110

runs suggesting a more robust optimization method for architecture search.111

Multi-model architecture search. For multi-model architecture search, we define the optimization as112

maximizing geomean(speedup) across all the evaluated models (See Section 2) while imposing area113

budget constraints of 6.8 mm2, 5.8 mm2, and 4.8 mm2. Note that, as the area budget becomes stricter,114

the number of infeasible trials increases. The baseline runtime numbers are obtained from a production-115

ized edge accelerator. Figure 2 demonstrates the cumulative reward (e.g. geomean(speedup)) across116

various number of sampled trials. Across the studied optimization strategies, P3BO delivers the highest117

improvements across all the design constraints. Compared to Vizier, P3BO improves the speedup by118

3

0 50 100 150 200 250
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

1/
La

te
nc

y/
Ar

ea

Evolutionary MBO P3BO Random Vizier

(a) MobileNetV2

0 50 100 150 200 250
Step

0.0001

0.0002

0.0003

0.0004

0.0005

1/
La

te
nc

y/
Ar

ea

Evolutionary MBO P3BO Random Vizier

(b) MobileNetEdge

0 50 100 150 200 250
Step

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

1/
La

te
nc

y/
Ar

ea

Evolutionary MBO P3BO Random Vizier

(c) M3

0 50 100 150 200 250
Step

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

1/
La

te
nc

y/
Ar

ea

Evolutionary MBO P3BO Random Vizier

(d) M4

0 50 100 150 200 250
Step

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

1/
La

te
nc

y/
Ar

ea

Evolutionary MBO P3BO Random Vizier

(e) M5

0 50 100 150 200 250
Step

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

1/
La

te
nc

y/
Ar

ea

Evolutionary MBO P3BO Random Vizier

(f) M6

Figure 1: Performance of optimization strategies across various neural models in maximizing the throughput per area (1
latency ×

1
area) (↑ is better). The shaded area depicts the 95% bootstrap confidence interval over five runs. Evolutionary and P3BO find high
reward accelerator configurations faster than alternative optimization strategies.

0 50 100 150 200 250
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ge
om

ea
n(

Sp
ee

du
p)

Evolutionary MBO P3BO Random Vizier

(a) Area Budget = 6.8

0 50 100 150 200 250
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ge
om

ea
n(

Sp
ee

du
p)

Evolutionary MBO P3BO Random Vizier

(b) Area Budget = 5.8

0 50 100 150 200 250
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ge
om

ea
n(

Sp
ee

du
p)

Evolutionary MBO P3BO Random Vizier

(c) Area Budget = 4.8

Figure 2: Performance of optimization strategies in maximizing geomean(speedup) (↑ is better) under alternative area budget
constrains. The shaded area depicts the 95% bootstrap confidence interval over five runs. The baseline latency numbers are from
a productionized edge accelerator. As the area constraint becomes tighter (more infeasible points), the improvement by P3BO
increases.

6.2%, 16.6%, and 24.6% for area budget 6.8 mm2, 5.8 mm2, and 4.8 mm2, respectively. These results119

demonstrate that as the design space becomes more constrained (e.g. more infeasible points), the120

improvement by P3BO increases, showing its performance in navigating the search space better.121

Analysis of infeasible trials. To better understand the effectiveness of each optimization strategy in122

selecting feasible trials and unique trials, we define two metrics feasibility ratio and uniqueness ratio,123

respectively. The feasibility (uniqueness) ratio defines the fraction of feasible (unique) trials over124

the total number of sampled trials. Higher ratios generally indicate improved exploration of feasible125

regions. Table 3 summarizes the feasibility and uniqueness ratio of each optimization strategy for area126

budget 6.8 mm2, averaged over multiple optimization runs. MBO yields the highest avg. feasibility127

ratio of≈ 0.803 while Random shows the lowest ratio of≈ 0.009. While MBO features a high feasibility128

ratio, it underperforms compared to other optimization strategies in finding accelerator configurations129

with high performance. The key reason attributed to this behavior for MBO is its low performance130

(0.236) in identifying unique accelerator parameters compared to other optimization strategies.131

Diversity of architecture configurations. A desired property of optimizers is to not only find a single132

but a diverse set of architecture configurations with a high reward that can be tested downstream. We133

quantified the ability of optimizers to find diverse configurations qualitatively by visualizing the 50 best134

unique trials found by each method using tSNE. Figure 3a shows that Evolutionary and P3BO find both135

higher-reward and more diverse configurations compared to alternative methods with the exception136

4

Table 3: The average feasibility and uniqueness ratio across five runs for architecture search with an area budget of 6.8 mm2 (see
Figure 2a).

Evolutionary MBO P3BO Random Vizier
Avg. Feasibility Ratio (↑ better) 0.362 0.803 0.347 0.009 0.012
Avg. Uniqueness Ratio (↑ better) 0.891 0.236 0.848 1.0 0.979

-16-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14
x

-25

-20

-15

-10

-5

0

5

10

15

20

y

Evolutionary .
MBO
P3BO
Random
Vizier

Method

0.2
0.4
0.6

0.8

1.0

Reward

(a) tSNE of the 50 best configurations found by
different methods.

Evolutionary
P3BO

Vizier
MBO

Random
0

1

2

3

4

M
ea

n
pa

irw
ise

 d
ist

an
ce

(b) Mean pairwise Euclidean distance of all con-
figuration with a reward above the 75th percentile
of the maximum reward. Error bars show the
variance across 5 optimization runs.

Figure 3: Diversity quantification of architecture configurations found by different methods for an area budget of 4.8 mm2.

80 60 40 20 0 20 40 60 80
x

80

60

40

20

0

20

40

60

80

y

Reward
0.0
0.3
0.6
0.9
Infeasible
False
True

Figure 4: tSNE of all trials (including infeasible ones) proposed by the Evolutionary algorithm for an area budget of 4.8mm2. Shows
the large fraction of infeasible trials (crosses) vs feasible (circles) trials.

of Random. This finding is supported quantitatively by Figure 3b, which shows the mean pairwise137

Euclidean distance of configurations with a reward above the 75th percentile of the maximum reward.138

The mean pairwise distance of Random is zero since it did not find any configurations with a reward139

above the 75th percentile. To further visualize the search space in architecture exploration, Figure 4140

shows the tSNE visualization of all trials proposed by the Evolutionary method for an area budget of141

4.8 mm2. This figure shows the large number of infeasible trials in the space and the proximity of142

low- and high-performing trials, which renders identifying high-performing trials challenging.143

Transfer learning between optimizations with different constraints. We analyze the effect of144

transfer learning between architecture search tasks with different area budgets. To create the source145

tasks, we select 100 unique trials from optimization studies with area budget constraint of 6.8 mm2146

(See Fig. 2a) under two criteria. First, the area consumption of the selected trials must satisfy the area147

budget (4.8 mm2) of the target task. Second, the objective function value (reward) of the selected148

trials must be below a predefined threshold. In our experiments, we create two source tasks with an149

objective value of 0.8 and 0.4, respectively, which we chose to better understand the impact of low-150

5

Figure 5: Comparing optimization strategies in maximizing the geomean(speedup) (↑ is better) without transfer learning (top row in
the legend) and with transfer learning (bottom row in the legend) for area budget 4.8 mm2. Transfer learning enables finding higher
performance accelerator configurations in fewer steps.

and high-value rewards. We use the selected trials to seed the optimization of the target task, which has151

an area budge of 4.8 mm2). Figure 5 shows the results. All the optimization strategies find high reward152

trials in fewer steps with transfer learning than without. The improvement is most pronounced for153

Vizier, which finds trials with a reward of≈ 1.0 with transfer learning compared to only≈ 0.8 without154

transfer learning. This suggest that Vizier uses the selected trials from the source task more efficiently155

than Evolutionary and P3BO for optimizing the target task.156

In our implementation, Evolutionary and P3BO simply use the 100 unique and feasible trails from the157

source task to initialize the population of evolutionary search. Instead, Vizier uses a more advanced158

transfer learning approach based on a stack of Gaussian process regressors (see Section 3.3 of Golovin159

et al. [14]), which may account for the performance improvement. We leave extending Evolutionary160

and P3BO by more advanced transfer learning approaches as future work.161

Comparison to exhaustive exploration. To understand the optimal design point, we perform a162

semi-exhaustive search within the search space. Since the search space has almost 5×108 design163

points, it is merely not practical to perform a fully-exhaustive search. As such, we manually prune164

the search space using domain knowledge where the design points are within a typical edge accelerator165

configuration (e.g. total memory size within 4–16 MB, total number of PEs within 2–16, etc.).166

Additionally, we perform a cheaper area estimation to reject design points before performing expensive167

cycle-level simulations. Using this pruning approach, we reduced the size of search space to around168

3K samples. We observe that P3BO can reach the best configurations found by the semi-exhaustive169

search by performing far fewer evaluations (1.36× less). Another interesting observation is that170

for the multi-model experiment targeting 6.8 mm2, P3BO actually finds a design slightly better than171

semi-exhaustive with 3K-sample search space. We observe that the design uses a very small memory172

size (3MB) in favor of more compute units. This leverages the compute-intensive nature of vision173

workloads, which was not included in the original semi-exhaustive search space. This demonstrates174

the need of manual search space engineering for semi-exhaustive approaches, whereas learning-based175

optimization methods leverage large search spaces reducing the manual effort.176

4 Related Work177

While inspired by related work, APOLLO is fundamentally different from classic methodologies in178

design space exploration: (1) we develop a platform to compare the effectiveness of a wide range of179

optimization algorithms; and (2) we are the first work, to the best of our knowledge, that leverages180

transfer learning between architecture exploration tasks with different design constraints showing181

how transfer learning slashes the time for discovering new accelerator configurations. Related work to182

APOLLO embodies three broad research categories of black-box optimization, architecture exploration,183

and transfer learning. Below, we overview the most relevant work in these categories.184

Black-box optimization. Black-box optimization has been broadly applied across different domains185

and appeared under various optimization categories, including Bayesian [37, 3, 24, 34, 42, 36, 6, 8],186

evolutionary [1, 39, 20], derivative-free [23, 32, 12], and bandit [7, 25, 38, 13]. APOLLO benefits187

from advances in black-box optimization and establishes a basis for leveraging this broad range of188

optimization algorithms in the context of accelerator design. In this work, we extensively studied189

6

the effectiveness of some of these black-box optimization algorithms, namely random search [14],190

Bayesian optimization [14], evolutionary algorithms [3], and ensemble methods [3] in discovering191

optimal accelerator configurations under different design objectives and constraints.192

Design space exploration. Design space exploration in computer systems has been always193

an active research and has become even more crucial due to the surge of specialized hard-194

ware [30, 18, 40, 28, 10, 21, 5, 4]. Hierarchical-PABO [30] and FlexiBO [18] use multi-objective195

Bayesian optimization for neural network accelerator design. In order to reduce the use of computa-196

tional resources, Sun et al. [40] apply genetic algorithm to design CNN models without modifying the197

underlying architecture. HyperMapper [28] uses a random forest in the automatic tuning of hardware ac-198

celerator parameters in a multi-objective setting. HyperMapper optionally uses continuous distributions199

to model the search space variables as a means to inject prior knowledge into the search space.200

Transfer learning. Transfer learning exploits the acquired knowledge in some tasks to facilitate201

solving similar unexplored problems more efficiently, e.g. consuming a fewer number of data samples202

and/or outperforming previous solutions. Transfer learning has been explored extensively and applied203

to various domains [27, 44, 43, 17, 19, 9, 35, 26, 22, 41]. Due to the expensive-to-evaluate nature of204

hardware evaluations, transfer learning seems to be a practical mechanism for architecture exploration.205

However, using transfer learning for architecture exploration and accelerator design is rather less206

explored territory. APOLLO is one of the first methods to bridge this gap between transfer learning207

and architecture exploration.208

5 Conclusion209

In this paper, we propose APOLLO, a framework for sample-efficient architecture exploration for large210

scale design spaces. The benefits of APOLLO are most noticeable when architecture configurations211

are costly to evaluate, which is a common trait in various architecture optimization problems. Our212

framework also facilitates the design of new accelerators with different design constraints by leveraging213

transfer learning. Our results indicate that transfer learning is effective in improving the target archi-214

tecture exploration, especially when the optimization constraints have tighter bounds. Finally, we show215

that the evolutionary algorithms used in this work yield more diverse accelerator designs compared216

to other studied optimization algorithms, which can potentially discover overlooked architectures.217

Architecture exploration is just one use case in the accelerator design process that is bolstered by218

APOLLO. The evolution of accelerator architectures mandates broadening the scope of optimizations219

to the entire computing stack, including scheduling and mapping, that potentially yields higher benefits220

at the cost of handling more complex optimization problems. We argue that such co-evolution between221

the cascaded layers of the computing stack is inevitable in designing efficient accelerators honed for222

a diverse category of applications. This is an exciting path forward for future research directions.223

References224

[1] Harith Al-Sahaf, Ying Bi, Qi Chen, Andrew Lensen, Yi Mei, Yanan Sun, Binh Tran, Bing Xue,225

and Mengjie Zhang. A survey on evolutionary machine learning. Journal of the Royal Society226

of New Zealand, 49(2):205–228, 2019.227

[2] Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy,228

and Lucy Colwell. Model-based reinforcement learning for biological sequence design. In229

International Conference on Learning Representations, 2019.230

[3] Christof Angermueller, David Belanger, Andreea Gane, Zelda Mariet, David Dohan, Kevin231

Murphy, Lucy Colwell, and D Sculley. Population-based black-box optimization for biological232

sequence design. arXiv preprint arXiv:2006.03227, 2020.233

[4] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom,234

Una-May O’Reilly, and Saman Amarasinghe. OpenTuner: An extensible framework for program235

autotuning. In Proceedings of the 23rd international conference on Parallel architectures and236

compilation, pp. 303–316, 2014.237

[5] Prasanna Balaprakash, Ananta Tiwari, Stefan M Wild, Laura Carrington, and Paul D Hovland.238

AutoMOMML: Automatic multi-objective modeling with machine learning. In International239

Conference on High Performance Computing, pp. 219–239. Springer, 2016.240

7

[6] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-241

parameter optimization. In Advances in neural information processing systems, pp. 2546–2554,242

2011.243

[7] Djallel Bouneffouf and Irina Rish. A survey on practical applications of multi-armed and244

contextual bandits. arXiv preprint arXiv:1904.10040, 2019.245

[8] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization of246

expensive cost functions, with application to active user modeling and hierarchical reinforcement247

learning. arXiv preprint arXiv:1012.2599, 2010.248

[9] T. Chugh, M. Singh, S. Nagpal, R. Singh, and M. Vatsa. Transfer learning based evolutionary249

algorithm for composite face sketch recognition. In 2017 IEEE Conference on Computer Vision250

and Pattern Recognition Workshops (CVPRW), pp. 619–627, 2017.251

[10] Jason Cong, Peng Wei, Cody Hao Yu, and Peng Zhang. Automated accelerator generation and252

optimization with composable, parallel and pipeline architecture. In 2018 55th ACM/ESDA/IEEE253

Design Automation Conference (DAC), pp. 1–6. IEEE, 2018.254

[11] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to derivative-free255

optimization. SIAM, 2009.256

[12] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to derivative-free257

optimization. SIAM, 2009.258

[13] Josep Ginebra and Murray K Clayton. Response surface bandits. Journal of the Royal Statistical259

Society: Series B (Methodological), 57(4):771–784, 1995.260

[14] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D Sculley.261

Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD262

international conference on knowledge discovery and data mining, pp. 1487–1495, 2017.263

[15] Suyog Gupta and Berkin Akin. Accelerator-aware neural network design using automl. arXiv264

preprint arXiv:2003.02838, 2020.265

[16] Andrew Howard and Suyog Gupta. Introducing the Next Generation of On-Device Vision266

Models: MobileNetV3 and MobileNetEdgeTPU. https://ai.googleblog.com/267

2019/11/introducing-next-generation-on-device.html, 2020.268

[17] Kotthoff Lars Vanschoren Joaquin Hutter, Frank (ed.). Automated Machine Learning: Methods,269

Systems, Challenges. The Springer Series on Challenges in Machine Learning. Springer270

International Publishing, 2019.271

[18] Md Shahriar Iqbal, Jianhai Su, Lars Kotthoff, and Pooyan Jamshidi. Flexibo: Cost-aware272

multi-objective optimization of deep neural networks. arXiv preprint arXiv:2001.06588, 2020.273

[19] Min Jiang, Zhongqiang Huang, Liming Qiu, Wenzhen Huang, and Gary G Yen. Transfer274

learning-based dynamic multiobjective optimization algorithms. IEEE Transactions on275

Evolutionary Computation, 22(4):501–514, 2017.276

[20] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of277

expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.278

[21] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben279

Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, et al. Spatial: A language280

and compiler for application accelerators. In Proceedings of the 39th ACM SIGPLAN Conference281

on Programming Language Design and Implementation, pp. 296–311, 2018.282

[22] Barış Koçer and Ahmet Arslan. Genetic transfer learning. Expert Systems with Applications,283

37(10):6997–7002, October 2010.284

[23] Jeffrey Larson, Matt Menickelly, and Stefan M Wild. Derivative-free optimization methods.285

arXiv preprint arXiv:1904.11585, 2019.286

8

https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html

[24] Benjamin Letham, Brian Karrer, Guilherme Ottoni, Eytan Bakshy, et al. Constrained bayesian287

optimization with noisy experiments. Bayesian Analysis, 14(2):495–519, 2019.288

[25] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.289

Hyperband: A novel bandit-based approach to hyperparameter optimization. The Journal of290

Machine Learning Research, 18(1):6765–6816, 2017.291

[26] Jie Lu, Vahid Behbood, Peng Hao, Hua Zuo, Shan Xue, and Guangquan Zhang. Transfer learning292

using computational intelligence: A survey. Knowledge-Based Systems, 80:14–23, May 2015.293

[27] Alan Tan Wei Min, Yew-Soon Ong, Abhishek Gupta, and Chi-Keong Goh. Multiproblem294

Surrogates: Transfer Evolutionary Multiobjective Optimization of Computationally Expensive295

Problems. IEEE Transactions on Evolutionary Computation, 23(1):15–28, February 2019.296

[28] Luigi Nardi, David Koeplinger, and Kunle Olukotun. Practical design space exploration. In297

2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer298

and Telecommunication Systems (MASCOTS), pp. 347–358. IEEE, 2019.299

[29] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A Ying,300

Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany, Stephen W Keckler, and Joel Emer.301

Timeloop: A systematic approach to dnn accelerator evaluation. In ISPASS. IEEE, 2019.302

[30] Maryam Parsa, John P Mitchell, Catherine D Schuman, Robert M Patton, Thomas E Potok,303

and Kaushik Roy. Bayesian multi-objective hyperparameter optimization for accurate, fast, and304

efficient neural network accelerator design. Frontiers in Neuroscience, 14:667, 2020.305

[31] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image306

classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,307

volume 33, pp. 4780–4789, 2019.308

[32] Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization: a review of algorithms309

and comparison of software implementations. Journal of Global Optimization, 56(3):1247–1293,310

2013.311

[33] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.312

Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference313

on computer vision and pattern recognition, pp. 4510–4520, 2018.314

[34] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking315

the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104316

(1):148–175, 2015.317

[35] Alistair Shilton, Sunil Gupta, Santu Rana, and Svetha Venkatesh. Regret bounds for transfer318

learning in bayesian optimisation. In Machine Learning Research: Proceedings of the 20th319

Artificial Intelligence and Statistics International Conference, pp. 1–9. Journal of Machine320

Learning Research (JMLR), 2017.321

[36] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine322

learning algorithms. In Advances in neural information processing systems, pp. 2951–2959, 2012.323

[37] Artur Souza, Luigi Nardi, Leonardo B Oliveira, Kunle Olukotun, Marius Lindauer, and Frank324

Hutter. Prior-guided bayesian optimization. arXiv preprint arXiv:2006.14608, 2020.325

[38] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian326

process optimization in the bandit setting: No regret and experimental design. arXiv preprint327

arXiv:0912.3995, 2009.328

[39] Chaoli Sun, Yaochu Jin, and Ying Tan. Semi-supervised learning assisted particle swarm329

optimization of computationally expensive problems. In Proceedings of the Genetic and330

Evolutionary Computation Conference, pp. 45–52, 2018.331

[40] Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Jiancheng Lv. Automatically designing332

cnn architectures using the genetic algorithm for image classification. IEEE Transactions on333

Cybernetics, 2020.334

9

[41] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. In335

Advances in neural information processing systems, pp. 2004–2012, 2013.336

[42] Ke Tang, Fei Peng, Guoliang Chen, and Xin Yao. Population-based algorithm portfolios with337

automated constituent algorithms selection. Information Sciences, 279:94–104, 2014.338

[43] Tinu Theckel Joy, Santu Rana, Sunil Gupta, and Svetha Venkatesh. A flexible transfer learning339

framework for Bayesian optimization with convergence guarantee. Expert Systems with340

Applications, 115:656–672, January 2019.341

[44] Michael Volpp, Lukas P. Fröhlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter,342

and Christian Daniel. Meta-Learning Acquisition Functions for Transfer Learning in Bayesian343

Optimization. arXiv:1904.02642 [cs, stat], February 2020.344

10

	Introduction
	Methodology
	Optimization Strategies

	Evaluation
	Related Work
	Conclusion

