
CADET: A Systematic Method For Debugging
Misconfigurations using Counterfactual Reasoning

Md Shahriar Iqbal∗
University of South Carolina
miqbal@email.sc.edu

Rahul Krishna∗
Columbia University

rahul.krishna@columbia.edu

Mohammad Ali Javidian
Purdue University

mjavidia@purdue.edu

Baishakhi Ray
Columbia University

rayb@cs.columbia.edu

Pooyan Jamshidi
University of South Carolina
pjamshid@cse.sc.edu

Abstract

Modern computing platforms are highly-configurable with hundreds of interact-
ing configuration options. However, configuring these systems is challenging.
Erroneous configurations can cause unexpected non-functional faults resulting
in significant performance degradation in non-functional system properties like
latency, energy consumption, heat dissipation, etc. This paper proposes CADET
(short for Causal Debugging Toolkit)—a method that enables users to identify,
explain, and fix the root cause of non-functional faults early and in a principled
fashion. CADET builds a causal model by observing the performance of the
system under different configurations. Then, it uses causal path extraction followed
by counterfactual reasoning over the causal model to (a) identify the root causes
of non-functional faults, (b) estimate the effects of various configuration options
on the non-functional system properties, and (c) prescribe candidate repairs to
the relevant configuration options to fix the non-functional faults. We evaluate
CADET on 5 highly-configurable software systems deployed on 3 NVIDIA Jetson
hardware platforms. We compare CADET with four state-of-the-art machine
learning (ML)-based debugging approaches. The experimental results indicate
that CADET can find repairs for faults with (on average) 8% better accuracy
in multiple non-functional properties 7× faster than the next best performance
debugging method.

1 Introduction
Modern computer systems are composed of multiple components, each of which are highly-
configurable, and are increasingly being deployed on heterogeneous hardware platforms (e.g.,
System-on-a-Chip, System-on-Module, IoT devices, cloud platforms) with different deployment
configurations (local, distributed, multi-cloud). For example, most modern ML systems, cyber-
physical systems, self-driving cars, robotics, and big data systems have such characteristics. The
configuration space in such systems is combinatorially large with thousands of software and hardware
configuration options that interact non-trivially with one another [1, 2, 3]. Unfortunately, configuring
these systems to achieve specific goals is challenging and error-prone. Incorrect configurations
(misconfigurations) happen as a result of unexpected interactions between software and hardware
configuration options across the system stack resulting in non-functional faults, i.e., faults in terms
of non-functional system properties such as latency, energy consumption, and/or heat dissipation.
These non-functional faults—unlike regular software bugs—do not cause the system to crash or

∗Joint First author.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

exhibit an obvious misbehavior [4, 5, 6]. Instead, misconfigured systems remain operational while
being compromised, resulting in severe performance degradation in latency, energy consumption,
and/or heat dissipation [7, 8, 9, 10]. The sheer number of modalities of software deployment is so
large that exhaustively testing every conceivable software and hardware configuration is impossible.

GPU Growth

Swap Mem.

4Gb
3Gb

2Gb

1Gb

512 Mb

GPU Growth

La
te

nc
y

Latency

Swap
Memory

GPU
Growth

Resource
Pressure

(a) (b) (c)

Figure 1: Observational data (in Fig. 1a) (incor-
rectly) shows that high GPU growth leads to high
latency. The trend is reversed when the data is seg-
regated by swap memory (Fig. 1b). Causal model
constructed on the observational data indicates that
GPU growth indirectly influences latency via swap
memory (Fig. 1c).

Consequently, identifying the root cause of non-
functional faults is notoriously difficult [11]
with as much as 99% of them going unno-
ticed or unreported for extended durations [12].
Non-functional faults have tremendous mone-
tary repercussions costing companies worldwide
an estimated $5 trillion in 2018 and 2019 [13].
They also dominate discussions on online fo-
rums where some developers are quite vocal in
expressing their dissatisfaction [14, 15]. There-
fore, we seek methods that can identify, explain,
and fix the root cause of non-functional faults
early and in a principled fashion.

Existing work. Much recent work has focused
on configuration optimization aimed at finding
a near-optimal configuration that optimizes a performance objective [16, 17, 18, 19]. Finding the
optimum configuration using push-button optimization approaches are not applicable here because we
tackle an essentially different problem—to find and repair the root causes of an already observed non-
functional fault. The global optima do not give us any information about the underlying interactions
between the faulty configuration options that caused the non-functional fault. This information is
sought after by developers seeking to address these non-functional faults [4, 20].

Some previous works have used ML-based performance modeling in fixed [21, 22, 23, 24, 25, 26,
27] and variable environments [28, 29, 30, 31]. Several works attempted to debug systems using
noisy logs [32], anomaly diagnosis [33, 34], sampling [2], data-driven approaches [35, 36, 37, 38],
explanation tables [39], query-based diagnosis [40], statistical debugging and association rule mining
based approaches [41, 42, 43, 44, 45, 46], and similarity analysis [47]. These approaches are
adept at describing if certain configuration options influence performance, however, they lack the
mathematical language to express how or why the configuration options affect performance. Without
this knowledge, we risk drawing misleading conclusions. They also require significant time to
gather the training samples, and this time grows exponentially with the number of configurations [48,
1]. Recent work has employed causal inference for detecting functional bugs (Holmes [49]) and
intermittent failures of databases (AID [50]). These works are orthogonal to performance debugging
of highly-configurable systems.

Limitations of existing work. In Fig. 1, we present an example to help illustrate the limitations of
the current techniques. Here, the observational data gathered so far indicates that a configuration
option GPU growth is positively correlated with increased latency (as in Fig. 1a). A black-box
ML-model built on this data will, with high confidence, predict that larger GPU growth leads to larger
latency. However, this is counter-intuitive because higher GPU growth should, in theory, reduce
latency not increase it. When we segregate the same data on swap memory (as in Fig. 1b), we see
that there is indeed a general downward trend for latency, i.e., within each group of swap memory,
as GPU growth increases the latency decreases. We expect this because GPU growth controls how
much memory the GPU can “borrow” from the swap memory. Depending on resource pressure
imposed by other host processes, a resource manager may arbitrarily re-allocate some swap memory;
this means the GPU borrows proportionately more/less swap memory thereby affecting the latency
correspondingly. This is reflected by the data in Fig. 1b. If the ML-based model were to consult the
available data (from Fig. 1a) unaware of such underlying causal structure, these models would be
incorrect. With thousands of configurations, inferring such nuanced information from optimization or
ML-based approaches would require a considerable amount of measurements and extensive domain
expertise which can be impractical, if not impossible, to possess in practice.

Our approach. In this paper, we propose the use of causal models [51, 52] to express the complex
interactions between the configuration options and the performance objectives with causal models—a

2

X 1 X 2 X 3

X 6X 4 X 5

Y 1 Y 2

Observational
data collection

Peformance
Fault

Causal Structure
Discovery

X 5 Y 1X 1

X 5 Y 1

Y 2

X 2

Y 2

X 6X 3

X 1 X 5 X 6

Causal Path
Extraction

Rank paths using

Avg. Causal Effect

Counterfactual
Query Engine

Repair with the

 highest causal Effect

What is the root-cause of my fault?

What shoud I do to improve my
performance objective Y?

1 2 3 4

CADET

Figure 2: Overview of CADET.

rich graphical representation that can be learned from performance data and that can be reasoned
upon using the mathematics of causal inference. To this end, we design, implement and evaluate
CADET that uses causal structural discovery algorithms [53, 54] to construct a causal model using
observational data. Then, it uses counterfactual reasoning [55] over the causal model to (a) identify
the root causes of non-functional faults, (b) estimate the effects of various configurable parameters
on the non-functional properties(s), and (c) prescribe candidate repairs to the relevant configuration
options to fix the non-functional fault. In the example of Fig. 1, CADET constructs a causal model
from observational data (as in Fig. 1c). This causal model indicates that GPU growth indirectly
influences latency (via a swap memory) and that the configuration options may be affected by
certain other factors, e.g., resource manager allocating resources for other processes running on
the host. CADET uses counterfactual questions such as, “what is the effect of GPU growth on
latency if the available swap memory was 2Gb?” to diagnose the faults and recommend changes
to the configuration options to mitigate these faults. We evaluate CADET on 5 real-world highly
configurable software systems including image recognition using Xception [56], natural language
processing (NLP) using BERT [57], speech recognition using DeepSpeech [58], database management
system using SQLite [59], and video encoder using x264 [60] deployed on 3 architecturally different
NVIDIA Jetson devices such as TX1, TX2 and XAVIER [61, 62]. The key reason we evaluated
these systems is that they expose numerous intrinsic non-linear interactions between options that
are beyond the visibility of software developers who use them. We compare CADET with state-of-
the-art ML-based performance debugging approaches including DELTADEBUGGING [63], CBI [41],
BUGDOC [42], and ENCORE [43]. Overall, we find that CADET is (on average) 7× faster in
detecting the root cause of non-functional faults with 8% better accuracy and recommending fixes
with 11% higher gain from the corresponding fault when compared to the next best ML-based
approaches in some cases. We also present a real-world case study where we demonstrate that
CADET finds repair with 14% higher gain than the experts’ advice in 24 minutes. The dataset and
the scripts to reproduce our findings are available in https://github.com/softsys4ai/CADET.

2 Motivation — A Real-World Example

We present an instance of a non-functional fault that was reported in the NVIDIA developer forum 2.
Here, a developer notices some strange behavior when trying to transplant their code for real-time
computation of depth information from stereo-cameras for object detection from NVIDIA Jetson
TX1 to TX2. Since TX2 has twice the compute power as TX1, the developer expects to have at
least 30% – 40% lower latency in TX2. However, the developer observed that TX2 had 4× the
latency as TX1. To solve this problem, the developer solicits advice from the developer forums. After
discussions spanning two days, the developer learns that she/he has made several misconfigurations:

• Wrong compilation flags: The compilation does not take into account the microarchitectural
differences between the two platforms that may be fixed by setting the -gencode=arch parameter and
compiling the code dynamically by disabling the CUDA_USE_STATIC flag. TX1 is based on Maxwell
microarchitecture, while TX2 is based on Pascal microarchitecture. These two microarchitectures
have significant differences in terms of power usage and compute speed [64].

• Wrong CPU/GPU clock frequency: The hardware configuration is set incorrectly. These may
be fixed by setting the configuration -nvpmodel=MAX-N which changes the CPU and GPU clock
settings. The Max-N setting in TX2 provides almost twice the performance of TX1 [65] due to
increased clock speeds and TX2’s use of 128-bit memory bus width versus the 64-bit in TX1 [64].

2https://forums.developer.nvidia.com/t/50477

3

https://github.com/softsys4ai/CADET
https://forums.developer.nvidia.com/t/50477

(Configurable Options) (Sys. Events) Latency
GPU Growth Swap Mem Resource Use etc.

c1 0.25 2 Gb 10% 1 sec, . . .
c2 0.5 1 Gb 20% 2 sec, . . .
...

...
...

. . .
...

...
cn 1.0 4 Gb 40% 0.1 sec, . . .

(a) Sample Observational Data

Latency
Swap Mem.

GPU Growth

Resource Pressure

(b) Dense Graph

LatencySwap Mem.GPU Growth

Resource Pressure

(c) FCI Skeleton

LatencySwap Mem.GPU Growth

Resource Pressure

(d) Partial Ancestral Graph (PAG)
from FCI

LatencySwap Mem.GPU Growth

Resource Pressure

0.80.6 0.2

0.4

0.9

0.1

(e) DAG from NOTEARS

LatencySwap Mem.GPU Growth

Resource Pressure

(f) Final ADMG

Figure 3: From observational data to fully connected, skeleton graph, and partial ancestral graph (PAG).

• Wrong fan modes: The fan modes need to be configured correctly to account for higher CPU/GPU
clock speeds. Otherwise, TX2 will thermal throttle the CPU and GPU to prevent overheating [66]
and invariably increasing the latency [67].

This is only one of many examples in a single system, in which misconfigurations severely impact the
non-functional properties of the system. Examples abound from many other systems and domains,
including IoT (e.g. Amazon Alexa) [68, 69] and production-scale cloud-based systems [11].

3 CADET: Causal Debugging Toolkit
This section presents a brief description of CADET (outlined in Fig. 2). We gather a few dozen
samples of observational data, by measuring the non-functional properties of the system (e.g., latency,
etc) under different configuration settings (see 1 in Fig. 2) to construct a graphical causal model using
the observational data (see 2 in Fig. 2). Then, we find paths that lead from configuration options to
latency, energy consumption, and thermal output (see 3 in Fig. 2). Next, a query engine generates
several counterfactual queries (what-if questions) about specific changes to each configuration option
(see 4 in Fig. 2) and finds which of these queries has the highest causal effect on remedying the
non-functional fault(s). Finally, we generate and evaluate the new configuration to assert if the newly
generated configuration mitigates the non-functional fault(s). If not, we repeat the process by adding
this to the current observational data.

Causal structure discovery. In this stage, we express the relationships between configuration
options (e.g., CPU freq, etc.) and the non-functional properties (e.g., latency, etc) using a causal
model. A causal model is a acyclic directed mixed graph (hereafter, ADMG) [70, 71]. The nodes
of the ADMG have the configuration options and the non-functional properties (e.g., latency, etc).
Additionally, we enrich the causal graph by including several nodes that represent the status of
internal system events, e.g., resource pressure (as in Fig. 1). Unlike configuration options, these
system events cannot be modified. However, they can be observed and measured to understand
how the causal-effect of changing configurations propagates to latency, energy consumption, or heat
dissipation, e.g., resource pressure in Fig. 1 determines how GPU growth affects latency. To build
the causal model we gather two dozen samples of observational data (resembling Table 3a). To
convert observational data into a causal graph, we use a prominent structure discovery algorithm
called Fast Causal Inference (hereafter, FCI) [53]. We picked FCI because it accommodates for
the existence of unobserved confounders [53, 72, 73]. This is important because we do not assume
absolute knowledge about the configuration space, hence there could be certain configurations we
could not modify or system events we have not observed. First, we build a dense graph by connecting
all pairs of variables with an undirected edge (as seen in Fig. 3b). Next, we use Fisher’s exact test [74]
to evaluate the independence of all pairs of variables conditioned on all remaining variables. Pruning
edges between the independent variables results in a skeleton graph as shown in Fig. 3c. Next, we
orient undirected edges using edge orientation rules [53, 72, 73, 75] to produce a partial ancestral
graph (as in Fig. 3d). We compare all the partially directed edges from the FCI’s PAG (Fig. 3d) with
their corresponding counterparts from NOTEARS’ DAG (Fig. 3e). The final causal model would be
an ADMG that resembles Fig. 3f.

Causal path extraction. In this stage, we extract paths from the causal graph (referred to as causal
paths) and rank them based on their average causal effect on latency, energy consumption, and heat
dissipation (our three non-functional properties). A causal path is a directed path originating from
either the configuration options or the system events and terminating at a non-functional property

4

(i.e., latency, energy consumption, or heat dissipation). To discover causal paths, we backtrack from
the nodes corresponding to each non-functional property until we reach a node with no parents. For
example, from Fig. 3f, we can extract two paths: (1) GPU growth swap memory Latency,
and (2) Resource Pressure swap memory Latency.

A complex causal graph can result in a large number of causal paths. Therefore, we rank the paths in
descending order from ones having the highest causal effect to ones having the lowest causal effect
on each non-functional property. For further analysis, we use paths with the highest causal effect.
To rank the paths, we measure the causal effect of changing the value of one node (say GPU growth
or X) on its successor in the path (say swap memory or Z). We express this with the do-calculus
notation such as E [Z | do (X = x)] that represents the expected value of Z (swap memory) if we set
the value of the node X (GPU growth) to x. To compute the average causal effect (ACE) of X → Z
(i.e., GPU growth swap memory), we find the average over all permissible values the node X
(GPU growth) can take, i.e., ACE (Z,X) = 1

N ·
∑
∀a,b∈X E [Z | do (X = b)] − E [Z | do (X = a)].

Here, N represents the total number of values X (GPU growth) can take. If changes in GPU growth
result in a large change in swap memory, then the ACE (Z,X) will be larger, indicating that GPU
growth on average has a large causal effect on swap memory. The prior equation can be extended to
the compute causal effect of a path PACE .

Repairing non-functional faults. In this stage, we use the topK paths with the largest PACE values
to: (a) identify the root cause of non-functional faults; and (b) prescribe ways to fix the non-functional
faults. When experiencing non-functional faults, a developer may ask specific queries to CADET and
expect an actionable response. For this, we translate the developer’s queries into formal probabilistic
expressions that can be answered using the causal paths. We use counterfactual reasoning to generate
these probabilistic expressions. To understand query translation, we use the example causal graph
of Fig. 3f where a developer observes a latency fault and has the following questions:

ä “What is the root cause of my latency fault?” To identify the root cause of a non-functional
fault we must identify which configuration options have the most causal effect on the performance
objective. For this, we use the steps outlined above to extract the paths from the causal graph and rank
the paths based on their average causal effect (i.e., PACE from) on latency. For example, in Fig. 3f we
may return the path (say) GPU growth swap memory Latency and the configuration options
GPU growth and swap memory both being probable root causes.

ä “How to improve my latency?” To answer this query, we first find the root cause as described
above. Next, we discover what values each of the configuration options must take so that the
new latency is better (low latency) than the fault (high latency). For example, we consider the
causal path GPU growth swap memory Latency, we identify the permitted values for the
configuration options GPU growth and swap memory that can result in a low latency (Y LOW) that
is better than the fault (Y HIGH). For this, we formulate a counterfactual expression of the form
Pr(Y LOW

repair|¬repair, Y HIGH
¬repair) that measures the probability of “fixing” the latency fault with a

“repair” (Y LOW
repair) given that with no repair we observed the fault (Y HIGH

¬repair). In our example, the
repairs would resemble GPU growth =0.66 or GPU growth =0.66, swap memory =4Gb, etc. We
generate a repair set (R) which contains the set of changes where the configurations GPU growth
and swap memory are set to all permissible values, Next, we compute the individual treatment effect
(ITE) on the latency (Y) for each repair in the repair setR. In our case, for each repair r ∈ R, ITE
is ITE(r) = Pr(Y LOW

r | ¬r, Y HIGH
¬r)− Pr(Y HIGH

r | ¬r, Y LOW
¬r). ITE measures the difference between

the probability that the latency is low after a repair r and the probability that the latency is still high
after a repair r. To find the most useful repair (Rbest), we find the repair with the largest (positive)
ITE, i.e., Rbest = argmax∀r ∈ R [ITE(r)]. This provides the developer with a possible repair for
the configuration options that can fix the latency fault.

Incremental learning. In this stage, we generate a new configuration using the recommended
repairs from the Rbest value. We reconfigured the system with the new configuration and we
observe the system behavior. If the new configuration resolves the non-functional fault, we return the
recommended repairs to the developer. Since the causal model uses limited observational data, there
may be a discrepancy between the actual performance of the system after the repair and the value of
the estimation fromRbest derived from the current version of the causal graph. The more accurate
the causal graph, the more accurate the recommended configuration will be [53, 72, 73, 75, 76].
Therefore, in case our repairs do not fix the faults, we update the observational data with this new

5

configuration and repeat the process. Over time, the estimations of the causal effects will become
more accurate. We terminate the incremental learning once we achieve the desired performance.

4 Case Study: Latency Fault in TX2
This section revisits the real-world latency fault previously discussed in §2. For this study, we
reproduce the developers’ setup to assess how effectively CADET can diagnose the root-cause of
the misconfigurations and fix them. For comparison, we use BUGDOC (an ML-based diagnosis
tool) and the recommendations by the domain experts on the forum. Fig. 4 illustrates our findings.
We find that CADET could diagnose the root cause of the misconfiguration and recommends a fix
within 24 minutes. Using the recommended configuration fixes from CADET, we achieved a frame
rate of 26 FPS (53% better than TX1 and 6.5× better than the fault). This exceeds the developers’
initial expectation of 30− 40% (or 22− 24 FPS). BUGDOC performed worse than CADET (21%
improvement over TX1) while taking 3.5 hours (time mostly spent on collecting training samples
to train internal decision tree) and changed several unrelated configurations (depicted by Ë) not
endorsed by the domain experts.

Problem [77]: For a real-time scene detec-
tion task, TX2 (faster platform) only pro-
cessed 4 frames/sec whereas TX1 (slower
platform) processed 17 frames/sec, i.e., the
latency is 4× worse on TX2.
Observed Latency (frames/sec): 4 FPS
Expected Latency (frames/sec): 22-24 FPS
(30-40% better)

Configuration Options C
A

D
E

T

B
U

G
D

O
C

Fo
ru

m

A
C

E
†

CPU Cores Ë Ë Ë 3%
CPU Frequency Ë Ë Ë 6%
EMC Frequency Ë Ë Ë 13%
GPU Frequency Ë Ë Ë 22%
Scheduler Policy · Ë · .
Sched rt runtime · Ë · .
Sched child runs · Ë · .
Dirty bg. Ratio · · · .
Dirty Ratio · Ë · .
Drop Caches · Ë · .
CUDA_STATIC Ë Ë Ë 55%
Cache Pressure · · · .
Swappiness · Ë · 1%

Latency (TX2 frames/sec) 26 20 23
Latency Gain (over TX1) 53% 21% 39%
Latency Gain (over default) 6.5× 5× 5.75×
Resolution time 24 mins 3.5 hrs 2 days

 Energy Consumption

context-switches

CPU Frequency

Latencyswappiness

CUDA_STATIC

EMC Freq

CPU Cores

GPU Freq

Figure 4: Using CADET on the real-world
example from §2. CADET is better and
faster than other methods.

Why CADET works better (and faster)?

CADET discovers the misconfigurations by constructing
a causal model (a simplified version of this is shown in
Fig. 4). This causal model rules out irrelevant configura-
tion options and focuses on the configurations that have
the highest (direct or indirect) causal effect on latency, e.g.,
we found the root cause CUDA STATIC in the causal graph
which indirectly affects latency via context-switches (an
intermediate system event); this is similar to other relevant
configurations that indirectly affected latency (via energy
consumption). Using counterfactual queries, CADET can
reason about changes to configurations with the highest
average causal effect (last column in Fig. 4). The counter-
factual reasoning occurs with no additional measurements,
significantly speeding up inference.

Together, the causal model and the counterfactual reason-
ing enable CADET to pinpoint the configuration options
that were misconfigured and recommend a fix for them
promptly. As shown in Fig. 4, CADET accurately finds all
the configuration options recommended by the forum (de-
picted by Ë in Fig. 4). Further, CADET recommends
fixes to these options that result in 14% better latency
than the recommendation by domain experts in the forum.
More importantly, CADET takes only 24 minutes (vs. 2
days of forum discussion) without modifying unrelated
configurations.

5 Evaluation
Experimental Setup. This study uses three NVIDIA Jet-
son platforms: TX1, TX2, and XAVIER and five software
systems on each platform: (1) An image recognition sys-
tem with Xception to classify 5000 images from the CI-
FAR10 dataset [78]; (2) an NLP system with BERT to perform sentiment analysis on 10000 reviews
from the IMDb dataset [79]; (3) An RNN based voice recognition system with DeepSpeech on 5
seconds long audio files; (4) SQLite, a database management system, to perform read, write, and
insert operations; and (5) x264 video encoder to encode a video file of size 11MB with a resolution
of 1920 x 1080. We use 28 configuration options that include 10 software options, 8 OS/Kernel
options, and 10 hardware options. We curate a non-functional faults dataset, called the JETSON
FAULTS dataset, and ground truth for each observed non-functional faults for each of the software
and hardware system used in our study. We create a ground-truth data by measuring configurations
for a fixed budget of 24 hours and identifying their root-causes manually for each fault by selecting

6

the configuration with the highest performance gain from the fault. By definition, non-functional
faults have latency, energy consumption, and heat dissipation that take tail values [11, 80], i.e., they
are worse than the 99th percentile. We filter our data set to find the configurations that result in tail
values for latency, energy consumption, and/or heat dissipation and label these configurations as
‘faulty’. We evaluate the predicted root-causes in terms of accuracy (Jaccard similarity). To compute
accuracy, we compare the set of configuration options identified by CADET to be the root cause with
the true root-cause obtained from the ground truth data. To assess the quality of fixes, we measure the
percentage improvement (gain %) after applying the recommended repairs using ∆gain. We prefer
higher accuracy and gain.

Table 1: Efficiency of CADET compared to other ap-
proaches. Cells highlighted in blue indicate maximum
improvement over faults. CADET achieves better per-
formance overall and is much faster.

Accuracy Gain Time†

C
A

D
E

T

C
B

I

δ
-D

E
B

U
G

E
N

C
O

R
E

B
U

G
D

O
C

C
A

D
E

T

C
B

I

δ
-D

E
B

U
G

E
N

C
O

R
E

B
U

G
D

O
C

C
A

D
E

T

O
th

er
s

Image 84 66 65 68 71 81 48 42 57 59 0.6 4
NLP 76 65 60 66 66 74 54 59 62 58 0.2 4
Speech 75 64 63 63 72 77 59 53 55 66 0.7 4
x264 76 67 60 61 70 23 9 12 8 11 1.2 4T

X
2

L
at

en
cy

SQLite 84 65 68 65 70 19 13 11 12 8 0.5 4
Image 74 63 55 63 64 83 59 50 35 51 0.2 4
NLP 77 60 63 66 64 63 49 36 49 53 0.4 4
Speech 73 66 65 61 71 82 64 48 65 63 1.1 4
x264 74 62 57 59 67 26 13 11 16 16 0.1 4X

A
V

IE
R

E
ne

rg
y

SQLite 80 53 62 66 71 21 16 10 14 15 0.5 4
Image 69 63 57 64 65 3 3 2 2 2 0.7 4
NLP 71 62 61 61 62 5 4 1 2 4 0.4 4
Speech 71 61 64 62 67 3 4 2 2 2 1.1 4
x264 74 65 57 64 65 7 3 2 2 3 0.2 4T

X
1

T
he

rm
al

SQLite 66 64 54 64 65 6 2 2 2 3 0.9 4

Results. We compare CADET with four
state-of-the-art ML-based methods for fault di-
agnostics, namely: DELTADEBUGGING [63],
CBI [41], BUGDOC [42], and ENCORE [43].
For all methods, we set a maximum budget of
4 hours. All methods require some initial ob-
servational data to operate. Within the budget,
CADET samples 25 initial observational data
to incrementally generate, evaluate, and update
the causal model with candidate repairs. Other
methods require a large and diverse pool of ob-
servational data for training. However, collect-
ing observational data is expensive and time-
consuming. Therefore, we use the entire bud-
get of 4 hours to generate random configuration
samples to train ML-based methods. We as-
sess the effectiveness of diagnostics for “single-
objective” non-functional faults, i.e., faults that
occur only in one of latency, energy consumption, or heat dissipation. For brevity, we evaluate
latency faults in TX2, energy consumption faults in XAVIER, and heat dissipation faults in TX1. Our
findings generalize over other hardware. Table 1 summarizes the effectiveness of CADET over other
ML-based fault diagnosis approaches. We observe the following:

• Accuracy and gain. CADET significantly outperforms ML-based methods in all cases. For
example, in SQLite database management system on TX2, CADET achieves 14% more accuracy
compared to BUGDOC (best among the remaining ML-based approaches). We observe similar trends
in energy faults, i.e., CADET outperforms other methods in all cases. CADET can recommend
repairs for faults that significantly improves latency and energy usage. Applying the changes to the
configurations recommended by CADET increases the performance drastically. We observed latency
gains as high as 81% (22% more than BUGDOC) on TX2 and energy gain of 83% (32% more than
BUGDOC) on XAVIER for image recognition.

• Wallclock time. CADET can resolve misconfiguration faults significantly faster than ML-based
approaches. In Table 1, the last two columns indicate the time taken (in hours) by each approach to
diagnosing the root cause. We find that while other approaches use the entire budget of 4 hours to
diagnose and resolve the faults, CADET can do so significantly faster before the maximum budget is
exhausted, e.g., CADET is 40× faster in diagnosing and resolving faults in energy usage for x264
deployed on XAVIER and 20× faster in diagnosing latency faults for NLP task on TX2. ML-based
methods require a large number of initial observational data for training. They spend most of their
allocated 4-hour budget on gathering these training samples. In contrast, CADET starts with only 25
samples and uses incremental learning to judiciously update the casual graph with new configurations
until a repair has been found.

Discussion. Table 1 shows that image recognition, NLP and speech recognition deep neural
network (DNN) systems had the most improvements with CADET compared to x264 and SQLite.
Misconfigurations affecting the onboard GPU lead to severe degradation in latency and energy
usage. Since DNN relies on GPU to optimize the operations, it must be configured appropriately to
leverage the full hardware potential. Other applications were less sensitive to such misconfigurations.
Further, all methods found it difficult to discover and resolve thermal faults. While CADET
outperformed other methods, the overall accuracy, and gain were lower than those for latency and
energy consumption faults. We believe there are two reasons for this: (1) The workloads exercised in

7

this work did not significantly heat the system; and (2) the thermal measurements were taken in a
controlled environment (indoor in a stable temperature), as a result, the variance temperature was
relatively lower.

6 Conclusion
Modern computer systems are highly-configurable with thousands of interacting configuration
options with complex performance behavior. Misconfigurations in these systems can elicit complex
interactions between software and hardware configuration options resulting in non-functional faults.
We propose CADET (short for Causal Debugging Toolkit), a novel approach for diagnostics that
learns and exploits the causal structure of configuration options, system events, and performance
metrics. Our evaluation shows that CADET effectively and quickly diagnoses the root cause of
non-functional faults and recommends high-quality repairs to mitigate these faults.

Acknowledgments. We like to acknowledge Christian Kästner, Sven Apel, Tianyin Xu, Vivek Nair,
Jianhai Su, Miguel Velez, Mohsen Amini Salehi and Tobius Dürschmid for their valuable feedback
and suggestions in improving the paper. This work was partially supported by NASA (RASPERRY-SI
Grant Number 80NSSC20K1720) and NSF (SmartSight Award 2007202).

References
[1] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and Rukma Talwadker.

Hey, you have given me too many knobs!: understanding and dealing with over-designed
configuration in system software. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, pages 307–319, 2015.

[2] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel. A comparison
of 10 sampling algorithms for configurable systems. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 643–654. IEEE, 2016.

[3] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin, and Benoit
Baudry. Test them all, is it worth it? assessing configuration sampling on the jhipster web
development stack. Empirical Software Engineering, 24(2):674–717, 2019.

[4] C Mylara Reddy and N Nalini. Fault tolerant cloud software systems using software config-
urations. In 2016 IEEE International Conference on Cloud Computing in Emerging Markets
(CCEM), pages 61–65. IEEE, 2016.

[5] Sokratis Tsakiltsidis, Andriy Miranskyy, and Elie Mazzawi. On automatic detection of per-
formance bugs. In 2016 IEEE international symposium on software reliability engineering
workshops (ISSREW), pages 132–139. IEEE, 2016.

[6] Adrian Nistor, Tian Jiang, and Lin Tan. Discovering, reporting, and fixing performance bugs.
In 2013 10th working conference on mining software repositories (MSR), pages 237–246. IEEE,
2013.

[7] Randal E Bryant, O’Hallaron David Richard, and O’Hallaron David Richard. Computer systems:
a programmer’s perspective, volume 2. Prentice Hall Upper Saddle River, 2003.

[8] I Molyneaux. The art of application performance testing: Help for programmers and quality
assurance.[sl]:" o’reilly media, 2009.

[9] Ana B Sánchez, Pedro Delgado-Pérez, Inmaculada Medina-Bulo, and Sergio Segura. Tandem:
A taxonomy and a dataset of real-world performance bugs. IEEE Access, 8:107214–107228,
2020.

[10] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. Caramel: Detecting and fixing
performance problems that have non-intrusive fixes. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1, pages 902–912. IEEE, 2015.

[11] Haryadi S Gunawi, Riza O Suminto, Russell Sears, Casey Golliher, Swaminathan Sundararaman,
Xing Lin, Tim Emami, Weiguang Sheng, Nematollah Bidokhti, Caitie McCaffrey, et al. Fail-
slow at scale: Evidence of hardware performance faults in large production systems. ACM
Transactions on Storage (TOS), 14(3):1–26, 2018.

8

[12] 99% of misconfiguration incidents in the cloud go unnoticed. In Help Net Security: https:
//www.helpnetsecurity.com/2019/09/25/cloud-misconfiguration-incidents/,
September 2019.

[13] Jonathan Greig. Cloud misconfigurations cost companies nearly $5 tril-
lion. In TechRepublic: https://www.techrepublic.com/article/
cloud-misconfigurations-cost-companies-nearly-5-trillion/, February 2020.

[14] High CPU usage on jetson TX2 with GigE fully loaded. In NVIDIA developer forums:
https://forums.developer.nvidia.com/t/124381, May 2020.

[15] General performance problems. In NVIDIA developer forums: https://forums.developer.
nvidia.com/t/111704, February 2020.

[16] Holger H Hoos. Programming by optimization. Communications of the ACM, 55(2):70–80,
2012.

[17] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. Faster discovery of faster system
configurations with spectral learning. Automated Software Engineering, 25(2):247–277, 2018.

[18] Pooyan Jamshidi and Giuliano Casale. An uncertainty-aware approach to optimal configuration
of stream processing systems. In Proc. Int’l Symp. on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 2016.

[19] Md Shahriar Iqbal, Jianhai Su, Lars Kotthoff, and Pooyan Jamshidi. Flexibo: Cost-aware
multi-objective optimization of deep neural networks. arXiv preprint arXiv:2001.06588, 2020.

[20] Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang. An empirical study of bugs in
machine learning systems. In 2012 IEEE 23rd International Symposium on Software Reliability
Engineering, pages 271–280. IEEE, 2012.

[21] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej Wąsowski.
Variability-aware performance prediction: A statistical learning approach. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 301–
311. IEEE, 2013.

[22] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. Performance-
influence models for highly configurable systems. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, pages 284–294, 2015.

[23] Norbert Siegmund, Sergiy S Kolesnikov, Christian Kästner, Sven Apel, Don Batory, Marko
Rosenmüller, and Gunter Saake. Predicting performance via automated feature-interaction
detection. In 2012 34th International Conference on Software Engineering (ICSE), pages
167–177. IEEE, 2012.

[24] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. Performance-
influence models for highly configurable systems. In Proc. Europ. Software Engineering Conf.
Foundations of Software Engineering (ESEC/FSE), pages 284–294. ACM, August 2015.

[25] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. Finding product line configura-
tions with high performance by random sampling. In Proc. Int’l Symp. Foundations of Software
Engineering (FSE). ACM, 2017.

[26] Pavel Valov, Jean-Christophe Petkovich, Jianmei Guo, Sebastian Fischmeister, and Krzysztof
Czarnecki. Transferring performance prediction models across different hardware platforms. In
Proc. Int’l Conf. on Performance Engineering (ICPE), pages 39–50. ACM, 2017.

[27] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej Wasowski.
Variability-aware performance prediction: A statistical learning approach. In Proc. Int’l Conf.
Automated Software Engineering (ASE), pages 301–311. IEEE, 2013.

[28] Pavel Valov, Jean-Christophe Petkovich, Jianmei Guo, Sebastian Fischmeister, and Krzysztof
Czarnecki. Transferring performance prediction models across different hardware platforms. In
Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering,
pages 39–50, 2017.

9

https://www.helpnetsecurity.com/2019/09/25/cloud-misconfiguration-incidents/
https://www.helpnetsecurity.com/2019/09/25/cloud-misconfiguration-incidents/
https://www.techrepublic.com/article/cloud-misconfigurations-cost-companies-nearly-5-trillion/
https://www.techrepublic.com/article/cloud-misconfigurations-cost-companies-nearly-5-trillion/
https://forums.developer.nvidia.com/t/124381
https://forums.developer.nvidia.com/t/111704
https://forums.developer.nvidia.com/t/111704

[29] Pooyan Jamshidi, Miguel Velez, Christian Kästner, Norbert Siegmund, and Prasad Kawthekar.
Transfer learning for improving model predictions in highly configurable software. In Proc.
Int’l Symp. Soft. Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE, 2017.

[30] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay Patel, and Yuvraj
Agarwal. Transfer learning for performance modeling of configurable systems: An exploratory
analysis. In Proc. Int’l Conf. Automated Software Engineering (ASE). ACM, 2017.

[31] Md Shahriar Iqbal, Lars Kotthoff, and Pooyan Jamshidi. Transfer Learning for Performance
Modeling of Deep Neural Network Systems. In USENIX Conference on Operational Machine
Learning, Santa Clara, CA, 2019. USENIX Association.

[32] Fei Wu, Pranay Anchuri, and Zhenhui Li. Structural event detection from log messages. In 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1175–1184, 2017.

[33] Tong Jia, Pengfei Chen, Lin Yang, Ying Li, Fanjing Meng, and Jingmin Xu. An approach for
anomaly diagnosis based on hybrid graph model with logs for distributed services. In ICWS
2017, pages 25–32.

[34] Xiaolan Wang, Xin Luna Dong, and Alexandra Meliou. Data x-ray: A diagnostic tool for data
errors. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, pages 1231–1245, 2015.

[35] Xiao Yu. Understanding and debugging complex software systems: A data-driven perspective.
2018.

[36] Charles M Curtsinger. Effective performance analysis and debugging. 2016.

[37] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma, Ruoyu Wang, and
Insu Yun. {REPT}: Reverse debugging of failures in deployed software. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 18), pages 17–32, 2018.

[38] Mejbah Alam, Justin Gottschlich, Nesime Tatbul, Javier S Turek, Tim Mattson, and Abdullah
Muzahid. A zero-positive learning approach for diagnosing software performance regressions.
In Advances in Neural Information Processing Systems, pages 11627–11639, 2019.

[39] Kareem El Gebaly, Parag Agrawal, Lukasz Golab, Flip Korn, and Divesh Srivastava. Inter-
pretable and informative explanations of outcomes. Proceedings of the VLDB Endowment,
8(1):61–72, 2014.

[40] Xiaolan Wang, Alexandra Meliou, and Eugene Wu. Qfix: Diagnosing errors through query
histories. In Proceedings of the 2017 ACM International Conference on Management of Data,
pages 1369–1384, 2017.

[41] Linhai Song and Shan Lu. Statistical debugging for real-world performance problems. ACM
SIGPLAN Notices, 49(10):561–578, 2014.

[42] Raoni Lourenço, Juliana Freire, and Dennis Shasha. Bugdoc: A system for debugging com-
putational pipelines. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 2733–2736, 2020.

[43] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vasanth Bala,
Tianyin Xu, and Yuanyuan Zhou. Encore: Exploiting system environment and correlation
information for misconfiguration detection. In Proceedings of the 19th international conference
on Architectural support for programming languages and operating systems, pages 687–700,
2014.

[44] Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan Bansal, Chandra Maddila, B Ashok,
Sumit Asthana, Christian Bird, and Aditya Kumar. Rex: Preventing bugs and misconfiguration
in large services using correlated change analysis. In 17th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 20), pages 435–448, 2020.

10

[45] Xue Han, Tingting Yu, and David Lo. Perflearner: learning from bug reports to understand
and generate performance test frames. In 2018 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 17–28. IEEE, 2018.

[46] Rahul Krishna, Tim Menzies, and Lucas Layman. Less is more: Minimizing code reorganization
using xtree. Information and Software Technology, 88:53–66, 2017.

[47] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler: Detecting performance
problems via similar memory-access patterns. In 2013 35th International Conference on
Software Engineering (ICSE), pages 562–571. IEEE, 2013.

[48] Konstantinos Kanellis, Ramnatthan Alagappan, and Shivaram Venkataraman. Too many knobs
to tune? towards faster database tuning by pre-selecting important knobs. In 12th {USENIX}
Workshop on Hot Topics in Storage and File Systems (HotStorage 20), 2020.

[49] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. Causal testing: Understanding defects’
root causes. In Proceedings of the 2020 International Conference on Software Engineering,
2020.

[50] Anna Fariha, Suman Nath, and Alexandra Meliou. Causality-guided adaptive interventional de-
bugging. In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data, pages 431–446, 2020.

[51] Judea Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress,
2000.

[52] Judea Pearl. Causality. Cambridge university press, 2009.

[53] Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT press, 2000.

[54] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears:
Continuous optimization for structure learning. In Advances in Neural Information Processing
Systems, pages 9472–9483, 2018.

[55] Judea Pearl. The algorithmization of counterfactuals. Annals of Mathematics and Artificial
Intelligence, 61(1):29, 2011.

[56] François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 1251–1258,
2017.

[57] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[58] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan
Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech: Scaling up
end-to-end speech recognition. arXiv preprint arXiv:1412.5567, 2014.

[59] Richard D Hipp. SQLite, https://www.sqlite.org/index.html, 2020.

[60] x264, http://www.videolan.org/developers/x264.html.

[61] Hassan Halawa, Hazem A. Abdelhafez, Andrew Boktor, and Matei Ripeanu. NVIDIA jetson
platform characterization. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), 10417 LNCS:92–105, 2017.

[62] Sparsh Mittal. A Survey on optimized implementation of deep learning models on the NVIDIA
Jetson platform. J. Syst. Archit., 97(January):428–442, 2019.

[63] Cyrille Artho. Iterative delta debugging. International Journal on Software Tools for Technology
Transfer, 13(3):223–246, 2011.

11

https://www.sqlite.org/index.html
http://www.videolan.org/developers/x264.html

[64] Dustin Franklin. Nvidia jetson TX2 delivers twice the intelligence to the
edge. In NVIDIA Developer Blog: https://developer.nvidia.com/blog/
jetson-tx2-delivers-twice-intelligence-edge/, March 7, 2017.

[65] Nvidia jetson TX2 delivers twice the intelligence to the edge. In
JetsonHacks Blog: https://www.jetsonhacks.com/2017/03/25/
nvpmodel-nvidia-jetson-tx2-development-kit/, March 25, 2017.

[66] Question about thermal management. In NVIDIA developer forums: https://forums.
developer.nvidia.com/t/59855, April 2018.

[67] Chia-Chang Chiu and Yi-Sheng Chueh. Method and computer system for thermal throttling
protection, October 30 2012. US Patent 8,301,873.

[68] Dikla Barda, Roman Zaikin, and Yaara Shriki. Keeping the gate locked on your IoT devices:
Vulnerabilities found on amazon’s alexa. By Check Point Research: https://research.
checkpoint.com/2020/amazons-alexa-hacked/, August 2020.

[69] Andrie Ene. Alexa hack jeopardized echo users network. http://bit.ly/AlexaHack2020,
August 2020.

[70] Thomas Richardson, Peter Spirtes, et al. Ancestral graph markov models. The Annals of
Statistics, 30(4):962–1030, 2002.

[71] Robin J Evans and Thomas S Richardson. Markovian acyclic directed mixed graphs for discrete
data. The Annals of Statistics, pages 1452–1482, 2014.

[72] Juan Miguel Ogarrio, Peter Spirtes, and Joe Ramsey. A hybrid causal search algorithm for latent
variable models. In Conference on Probabilistic Graphical Models, pages 368–379, 2016.

[73] Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based on
graphical models. Frontiers in genetics, 10:524, 2019.

[74] Lynne M Connelly. Fisher’s exact test. Medsurg Nursing, 25(1):58–60, 2016.

[75] Diego Colombo, Marloes H Maathuis, Markus Kalisch, and Thomas S Richardson. Learning
high-dimensional directed acyclic graphs with latent and selection variables. The Annals of
Statistics, pages 294–321, 2012.

[76] Diego Colombo and Marloes H Maathuis. Order-independent constraint-based causal structure
learning. The Journal of Machine Learning Research, 15(1):3741–3782, 2014.

[77] Cuda performance issue on TX2. In NVIDIA developer forums: https://forums.
developer.nvidia.com/t/50477, June 2020.

[78] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 (Canadian Institute for Advanced
Research), http://www.cs.toronto.edu/~kriz/cifar.html.

[79] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pages
142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

[80] Martin Kleppmann. Designing data-intensive applications: The big ideas behind reliable,
scalable, and maintainable systems. " O’Reilly Media, Inc.", 2017.

12

https://developer.nvidia.com/blog/jetson-tx2-delivers-twice-intelligence-edge/
https://developer.nvidia.com/blog/jetson-tx2-delivers-twice-intelligence-edge/
https://www.jetsonhacks.com/2017/03/25/nvpmodel-nvidia-jetson-tx2-development-kit/
https://www.jetsonhacks.com/2017/03/25/nvpmodel-nvidia-jetson-tx2-development-kit/
https://forums.developer.nvidia.com/t/59855
https://forums.developer.nvidia.com/t/59855
https://research.checkpoint.com/2020/amazons-alexa-hacked/
https://research.checkpoint.com/2020/amazons-alexa-hacked/
http://bit.ly/AlexaHack2020
https://forums.developer.nvidia.com/t/50477
https://forums.developer.nvidia.com/t/50477
http://www.cs.toronto.edu/~kriz/cifar.html

