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Abstract

Data parallel ML models can take several days or weeks to train on several ac-
celerators. The long duration of training relies on the cluster of resources to be
available for the job to keep running for the entire duration. On a mesh network
this is challenging because failures will create holes in the mesh. Packets must
be routed around the failed chips for full connectivity. In this paper, we present
techniques to route gradient summation allreduce traffic around failed chips on 2-D
meshes. We evaluate performance of our fault tolerant allreduce techniques via
the MLPerf-v0.7 ResNet-50 and BERT benchmarks. Performance results show
minimal impact to training throughput on 512 and 1024 TPU-v3 chips.

1 Introduction

Deep learning has found a wide range of applications from image classification [12], object de-
tection [13]], language modeling [21} [10], content recommendation [20]], speech recognition [9],
reinforcement models for gaming and self driving cars. To enable high quality, the models are trained
on large datasets typically for several days on tens to hundreds of accelerators such as NVIDIA GPUs.
The popular algorithm for distributed training is mini-batch data parallel training [18]]. Here each
worker executes ML training forward and backward passes on a mini-batch. The computed gradients
from the loss function are then summed globally via an allreduce operation.

Large scale ML data parallel training relies on a scalable global allreduce library optimized for the
training platform. As several training steps are typically executed with the same batch size over
several days, the same number of accelerators must be dedicated to the training job. Typically, in a
datacenter cluster, when a failure happens the job will restart from a recent checkpoint and the failed
server is swapped with a spare server on the data center network. This approach works well on a fully
connected data center network.

On a 2-D mesh network, when there is a failure, any of the following approaches could be used:

e Fire Fighter approach: here data center specialists or even robots can quickly go and repair
the failed host and make all servers in the mesh available for the job.

e Sub-mesh jobs: the ML training job is executed on a mesh smaller than the original mesh. If
the failure is in the middle of the mesh, the training job may only execute on half the mesh
resulting in significant loss to training throughput in that job, while the unavailable servers
are repaired.

e Rebuild mesh with hot spares [7]: in this case, when there is a failure, the mesh data network
is rebuilt via the use of spares. Note, there is additional cost to having spares in rows and
columns of the mesh.

e Fault tolerant technique: here there are no additional spares and network packets are routed
around the failed nodes in the mesh network. The main challenge here is to execute the
gradient global summation efficiently on the entire mesh even with failed chips.
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Figure 1: Dimension order routing on 2-D Figure 2: Non-minimal routing on a 2-D mesh
meshes. with a 2x2 failed region of chips.
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Figure 4: 2-D algorithm for allreduce on 2-D
meshes. Here, there are two concurrent reduc-
tions colored red and blue

Figure 3: 1-D algorithm for building a near-
neighbor Hamiltonian ring on a 2-D mesh.

We present techniques to execute fast global summation operations on 2-D meshes with failed
chips. We present performance results on the Google TPU-v3 machine [[15,|1,[17]. The next section
describes optimized allreduce algorithms on 2-D meshes with failures.

2 Mesh Algorithms

Routing on the TPU-v3 mesh communication network uses standard dimension order routing (Fig-
ure[T). To increase availability of TPU meshes, we explore a mode where we enable high throughput
allreduce with failed regions that are 2x2 or 4x2 blocks of chips. These correspond to a single board
or 2 boards on a single host of the TPU-v3 machine. In the presence of a failed contiguous region of
chips the network routing would use non-minimal paths around the failed region as shown in Figure[2]
As long as the non-minimal paths don’t form cycles, significant additional Virtual channel resources
are not required on a 2D mesh [16} [11]].

2.1 Allreduce on 2-D mesh networks

The ring algorithm [5]] is widely used when implementing the allreduce collective operation. For
example, the NVIDIA NCCL [3] uses a ring algorithm for reductions between GPUs over the NVLink
network [4]. Ring reductions schemes for allreduce on a 2-D mesh can use either the 1-D algorithm
(Figure[3) or the 2-D algorithm [14] as shown in Figure[d] In the 1-D scheme, a Hamiltonian circuit
is built such that nodes only communicate with a downstream and upstream near neighbor on the



2-D mesh. This scheme can have a high latency of O(IN?) store-forward transfers on an N x N
mesh. This may be significant for short and medium sized transfers. In the 2-D algorithm (Figures 4]
and[5), nodes execute allreduce rings along the X dimension first (shown in red) and then along the y
dimension (shown in blue). After the first phase along the X dimension of an N x [N mesh, each node
has a reduced shard of size 1/N the total allreduce payload. In the second phase, the small summed
shard is summed along the Y dimension to produce a shard of size 1/N? the allreduce payload. The
result shard is broadcast over two gather phases on the Y and then the X dimensions. Note, the 2-D
algorithm has a lower latency of O(N) on an N x N mesh. For full throughput, we can execute two
concurrent flips over half the payload along X and Y dimensions and then execute the second phase
along Y and X dimensions, respectively. This results in twice the throughput in the 2-D algorithm.

A possible downside of the 2-D scheme is that
links are shared by traffic in two directions on

a 2-D mesh resulting in network contention. An Gradients
alternative scheme that does not require multiple

colors (concurrent flips) is presented in Figures[g] Reduce Scaler X
and Note, in this scheme we build rings of

size 2 X N nodes. As each link is only used
by one all-reduce ring, this scheme can achieve

high link throughput in the first phase. However,
note in the second phase (Figure[7) nodes must

communicate with ring neighbors that skip rows

and that may result in some network congestion. v

However, on large meshes the communication

volume is significantly reduced in the second

phase and this phase will not significantly im- Figure 5: Steps in the data parallel gradient sum-
pact the throughput of the allreduce operation.  mation allreduce operation on a 2-D mesh.

Figure 7: Second phase of alternate 2-D allre-
duce scheme, where nodes in alternate rows
form a ring.

Figure 6: First phase in the alternate 2-D allre-
duce scheme, where pairs of two rows form a
ring and execute a ring allreduce.

2.2 Fault tolerant allreduce schemes

We next present algorithms for allreduce when there are failures. Figure [§]shows the 1-D scheme on
a 2-D mesh with a contiguous failed region of size 2x2. Note, the 1-D Hamiltonian circuit can be
built when the failed chips are form a contiguous region that is of even size and starts on even rows
and columns.

When the shape of the failed region is 2kx2 or 2x2k we can build optimal 2-D allreduce rings as
shown in Figure[9] Here we build rings on nodes along two consecutive rows along the X dimension
similar to the allreduce scheme in Figures[6and[7] Neighbors of the failed chips (shown in yellow)
form smaller rings in similar 2x2 blocks as shown in Figure 9} After a ring reduction round, the
partial sums on yellow nodes are forwarded to neighbors on full blue rings as shown in Figures[9]
and[T0} In the first phase of the allreduce, the blue rings do not share network links and that results in



Figure 9: Fault tolerant allreduce rings built us-
ing a 2-D algorithm. The failed chips are marked
in red and the peers of failed chips marked in
yellow forward data to the full blue rings.

Figure 8: 1-D scheme to build an allreduce ring
on a 2-D mesh with a 2x2 failed region. Failed
chips marked in red

high throughput. A similar forwarding scheme can be used in the second phase, where nodes that
are Y neighbors of the failed chips forward their contributions to Y neighbors on columns that don’t
have failed chips. However, for simplicity, we just use the route around scheme shown in Figure 2] to
execute ring reductions in the second phase. We find the route around scheme works quite well as the
second phase transfers 1/2N less payload than the first phase.

3 Experiments

We compare the performance of fault tolerant 2-
D allreduce with standard 2-D allreduce on the
Google TPU-v3 machine. We use the MLPerf-
v0.7 [2]] ResNet-50 and BERT benchmarks to _

compare both schemes. These benchmarks are i
developed in the TensorFlow [8] programming 22 Reduce Seater || Reduee Soaterx
framework. ResNet-50 [12] is an image
classification model that is one of the most
widely-used models for ML benchmarking. The

Reduce Scatter Y

MLPerf [2] ResNet-50 benchmark trains the
model on the ImageNet-1K [19] dataset. The Forward Results

BERT [10] model is a pre-training task for lan- 2eAIGater | €——[  AlGatherx |
guage understanding with a bi-directional trans- 'lv

former architecture that trains on the Wikipedia 'L

dataset. For a fine grained analysis of allreduce
we disable the weight update sharding [22]] tech-

nique in the XLA compilers for TPUs [6]]. Note Figure 10: Steps in the forwarding scheme with a
the weight update sharding technique distributes failed 2x2 region on a 2-D mesh.

the optimizer weight updates by executing them

on the partially summed shards produced during

the ring-allreduce algorithm.

Table[T|shows the end to end time with the two MLPerf benchmarks on 512 and 1024 TPU chips that
had 16x32 and 32x32 mesh topologies. The failed region here has a shape of 4x2 with 8 total failed
chips. Note, the run-to-run variance here is under 2%. The table also shows the relative efficiency
of fault tolerant vs full meshes. The relative efficiency also compensates for the reduction in the
number of chips in addition to overheads from the fault tolerant allreduce scheme. From the table we
can conclude the maximum overhead from fault tolerant allreduce is 5.4%. On 512 chips, the fault
tolerant job is more efficient than the full mesh job. This may be because the fault tolerant training job
results in better regularization than the full mesh job. Table [2]compares the communication overheads
from standard allreduce vs fault tolerant allreduce.



Benchmark Full Mesh Fault Tolerant Mesh Relative Efficiency
TPU Chips Benchmark Time | TPU Chips Benchmark Time

ResNet-50 512 1.80 minutes 504 1.84 minutes 0.99

ResNet-50 1024 1.08 minutes 1016 1.15 minutes 0.946

BERT 512 1.90 minutes 504 1.92 minutes 1.02

BERT 1024 1.16 minutes 1016 1.19 minutes 0.986

Table 1: End to end times from the MLPerf-v0.7 benchmarks are shown on both the standard 2-D
mesh and the fault tolerant 2-D mesh with a failed 4x2 region. The relative efficiency shows the
performance degradation from the fault tolerant mesh.

Benchmark Full Mesh Fault Tolerant Mesh \
TPU Chips Allreduce overhead | TPU Chips  Allreduce Overhead

ResNet-50 512 4.2% 504 6.4%

ResNet-50 1024 8.8% 1016 11%

BERT 512 3.7% 504 4.7%

BERT 1024 6.0% 1016 7.8%

Table 2: Here we show the communication overhead percent in the device execution step time.

4 Summary

We presented a fault tolerant allreduce algorithm on 2-D mesh networks. The fault tolerant allreduce
algorithm enabled higher availability as ML training jobs could execute with a failed region of up
to 8 chips (in a contiguous 4x2 topology). This resulted in ML training running on 504 of the 512
chips and 1016 out of 1024 chips, respectively. In the MLPerf BERT and ResNet-50 benchmarks, the
training time was minimally affected with under 6% overheads in the worst case. This scheme has
been available in production on Google data centers for training of Google ML models. Techniques
presented are general and the fault tolerant schemes could be extended to other architectures that
have 2-D meshes.

In future, we plan to implement the weight update sharding optimization [22] on meshes with failures.
As the fault tolerant allreduce algorithm builds reduce-scatter and all-gather rings on complete
dimensions, the optimizer weight updates can be computed at the end of the reduce-scatter phase and
the updated weights can be forwarded to the nodes that are neighbors of the failed chips and do not
participate in those allreduce rings.

The schemes presented in this paper can be extended to n-D mesh and n-D torus networks. On
such networks multi-dimensional rings will need to be built to reach peak performance. The main
challenge would be to ensure efficient forwarding of partial sums from neighbors of failed chips to
the full allreduce rings.
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