
Matrix Profile Index Prediction for Streaming Time
Series

Maryam Shahcheraghi, Trevor Cappon, Samet Oymak, Evangelos Papalexakis, Eamonn Keogh,
Zachary Zimmerman, and Philip Brisk

University of California Riverside
{sshah073, tcapp001, zzimm001}@ucr.edu, oymak@ece.ucr.edu

{epapalex, eamonn, philip}@cs.ucr.edu

Abstract

Discovery and classification of motifs (repeated patterns) and discords (anomalies)
in time series is fundamental to many scientific fields. These and related problems
have effectively been solved for offline analysis of time series; however, these
approaches are computationally intensive and do not lend themselves to streaming
time series, such as those produced by IoT sensors, where the sampling rate
imposes real-time constraints on computation and there is strong desire to locate
computation as close as possible to the sensor. One promising solution is to
use low-cost machine learning models to provide approximate answers to these
problems. For example, prior work has trained models to predict the similarity
of the most recently sampled window of data points to the time series used for
training. This work addresses a more challenging problem, which is to predict not
only the “strength” of the match, but also the relative location in the representative
time series where the strongest matching subsequences occur. We evaluate our
approach on two different real world datasets; we demonstrate speedups as high as
about 30× compared to exact computations, with predictive accuracy as high as
87.95%, depending on the granularity of the prediction.

1 Introduction

This paper describes a machine learning system that predicts similarities between a streaming time
series and a representative time series used to train the model. The system approximates the locations
in the representative time series of subsequences that are most similar to the most recent window of
sampled data points from the streaming time series. Prior work has computed this information exactly
at great cost (1; 2; 3; 4; 5; 6), but cannot meet the real-time constraints on computation that are
needed to process streaming data. One existing technique can predict similarities to a representative
time series, but cannot approximate indices (7). For example, if applied to earthquake data, this
method predicts if a recently sampled window of seismograph readings is similar to something in the
historical record; whereas, the system presented in this paper predicts similarity and the approximate
temporal location of similar subsequences, which may or may not be in the vicinity of a recorded
seismic event. The method is not specific to seismic data and can be applied to any time series.

In this paper, we solve the index prediction problem using a tree of machine learning models of
varying granularity. Using seismic activity prediction as an example, suppose that our window
contains the most recent minute of sampled datapoints. An exact search would compute the similarity
of this window to each minute in the historical record. Assuming that we limit the historical record to
a year’s worth of data, the tree would first predict the month(s) during which similar subsequences
occur; then, within each predicted month, it would then predict the weeks, days, hours, and finally

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



minutes, leveraging the tree structure to limit the search to the most promising regions of the historical
record. This approach readily generalizes to other domains.

2 Background Material & Related Work

A Time Series T is a sequence of n datapoints ordered in time. A subsequence of T starting at
position i with length m� n is denoted as Ti,m or Ti if m can be inferred from context.

Time series analysis to solve problems such as classification, clustering, motif discovery, and anomaly
detection (1; 8; 9; 10). Among these techniques, the Matrix Profile and its extensions can solve
these problems offline once the time series has been fully collected (1; 2; 3; 4; 5; 6); the Learned
Approximate Matrix Profile (LAMP) can solve them online through prediction (7).

The Matrix Profile is an array of the maximum Pearson correlations between each Ti ∈ T and all
the other subsequences Tj ∈ T ; The subsequences with maximum correlation to Ti are called the
Nearest Neighbors. A separate array, the the Matrix Profile Index, contains the indices (locations) of
the nearest neighbor of each subsequence Ti ∈ T The pair comprising Ti and its nearest neighbor in
T is called Ti’s self-join; The pair of Ti ∈ one time series (TA) and its nearest neighbor in another
time series (TB) is called the Ti’s AB-join. The AB-Matrix Profile is a similar extension that stores
correlations between two time series.

The Matrix Profile is expensive to compute. As a lower-cost alternative, LAMP (7) is a function
LTR

: TS → [0, 1) that predicts the AB-Matrix Profile between a representative time series TR and
a much shorter window of sampled datapoints TS from a streaming time series. In principle, any
machine learning model can be used; the original LAMP paper employed a small 1D convolutional
neural network (1D-CNN) with residual connections; we use the same 1D-CNN here. LAMP
predictions run orders of magnitude faster than computing AB-Matrix Profiles directly. This makes
LAMP a suitable option for real-time applications deployed on embedded systems.

The work presented here extends LAMP for index prediction. It exhibits similarities to time series
indexing methods such as iSAX (11), iSAX 2.0 (12), iSAX2+ (13) and ADS+ (14), among others.
Specifically, our technique constructs a tree of LAMP models of varying granularity; this is similar
to TARDIS (15), which is a tree-structured indexing method built upon iSAX. All these methods
index a time series, not its Matrix Profile. The approach presented here is also influenced by a recent
learned indexing methods for database structures, such as B-Trees (16).

3 Proposed Method

To address the problem of Matrix Profile index prediction we propose a tree of LAMP models, in
which each vertex corresponds to a LAMP model trained on different portions of a long time series.
We refer to it as LAMP-Tree. For example, Figure 1 shows an example in which the training data is
divided into 48 segments wi. The 48 leaves are each trained on one week of data; each internal node
is trained on a four-week period of data; and the root node is trained on the full 48-week worth of
data; the root represents the original LAMP model (7).

3.1 LAMP-Tree Queries (Inference)

The input to the LAMP-Tree is a short time series TQ called a query (i.e., the most recent window
of sampled datapoints) along with a user-specified threshold. A match occurs if the LAMP model
at each node predicts a correlation value above the threshold: assuming that the LAMP models are
reasonable accurate, at least one subsequence in leaf reachable from the current node will match the
query. This yields simple top-down querying procedure, starting at the root: if a match is predicted
at a non-leaf node, all of its children are search recursively; if a non-match is predicted, the search
is pruned at that node. If a match is predicted at a leaf node, then that leaf is added to the set of
matching leaves returned by the query.

Figure 2 depicts the LAMP-Tree inference process. Given the window W of recently-sampled
datapoints, the LAMP model at the root reports a strong match, indicating that a similar subsequence
occurred at least once in the 48 weeks’ worth of data. Next, we run the LAMP models at the twelve
internal nodes: a strong match is reported at w13−16, but not at other internal nodes. This means that

2



w1�48

w1�4

w1 w2 w3 w4

w45�48

w45 w46 w47 w48

Figure 1: A full 48-week LAMP-Tree

1 Introduction

1

Figure 1: A 48-week LAMP-Tree: leaf node wi represents the ith week, and corresponds to
subsequence of training data Twi

with LAMP model Lwi
; internal node wi−j represents the i through

jth week and corresponds to subsequence of training data Twi−j
and LAMP model Lwi−j

.

w1�48

w1�4

w1 w2 w3 w4

w13�16

w13 w14 w15 w16

w45�48

w45 w46 w47 w48

Figure 1: Evaluation Process. Evaluation does not continue for the children of
a node when a low correlation occurs for that node.

1 Introduction

1

Node pruned from search

Match not predicted

Match predicted

Figure 2: Querying the LAMP-Tree in Figure 1. The query returns w14 and w16 as matching leaves.

any predicted matches occurred between w13 and w16; the search continues exclusively in the subtree
rooted at w13−16, and positive matches are predicted for w14 and w16. In this example, weeks are the
finest granularity, but in principle the tree could extend to days, hours, etc.

3.2 LAMP-Tree Training

We summarize the LAMP-Tree training process using the 48-week time series in Figure 1. The model
developer specifies the arity of each level of the tree; we assume that the representative time series
has sufficient length to admit a complete tree. Figure 1 has an arity of 12 at the root and 4 at internal
nodes. We introduce overlap between consecutive training segments Twi , Twi+1 to ensure that no
correlations are lost at subsequence boundaries. Training proceeds bottom-up, starting at the leaves.
Let wi be a leaf node. We construct a LAMP model Lwi

trained on Twi
’s Self-Join (7). The user

specifies a parameter p, which throttles the amount of additional training data. If there are N leaf
nodes in total, we randomly select ∼ dpNe additional leaf nodes and retrain their LAMP models
using subsequence Ti to improve accuracy. We then recursively train a LAMP model Lwi−k

for each
non-leaf node wi−k using its children’s LAMP models. For each training segment, we train Lwi−k

to
predict the maximum correlation among its children’s LAMP models; by induction, this implies that
we are training Lwi−k

to predict the maximum correlation between the training segment and the best
matching nearest neighbor among the leaf nodes wj , i ≤ j ≤ k. This process terminates at the root.

4 Experimental Results

Experimental Setup: We evaluated LAMP-Tree using an Intel Core i9-9900 CPU running at 3.1
GHz with 32 GB RAM and running Ubuntu 18.04.4 LTS. We trained the 1D-CNNs employed in
our LAMP models and computed the Matrix Profile (for comparative purposes) using the SCAMP
algorithm (4) on one core of an Nvidia TU102 GPU.

Datasets: We used a publicly available dataset of Seismic data, collected near Parkfield, CA in 2004
that contains several catalogued earthquakes, consisting of 140M datapoints for 112 days (starting
from August, 15’th) (17).

3



Table 1: Summary of the LAMP-trees used for
evaluation

STRUCTURE LEAVES INTERNAL

3L-4M 30×4M 5×24M
3L-10M 12×10M 3×40M
2L-20M 6×20M -
2L-24M 5×24M -
2L-40M 3×40M -

Table 2: Indexing speedup of LAMP-Tree com-
pared to exact Matrix Profile Index computation.

STRUCTURE SPEEDUP

3L-4M 10.70
3L-10M 20.76
2L-20M 27.44
2L-24M 28.06
2L-40M 26.99

0.00

20.00

40.00

60.00

80.00

100.00

3L-Tree4M 3L-Tree10M 2L-Tree20M 2L-Tree24M 2L-Tree40M

Ac
cu

ra
cy

 (%
)

LAMP-Tree Structures

Precision
Recall
F1-score

Figure 3: Indexing accuracy in terms of Precision, Recall, and F1-score for LAMP-Trees with p=0.3
for 4NN Matrix Profile.

LAMP-Trees: We trained five LAMP-Trees for the Seismic dataset. We use naming convention aL-b
for each tree, where a is the number of levels and b is the number of datapoints per leaf. For example,
a 3L-4M LAMP-Tree has three levels and four million datapoints per leaf. The first 85% of each
time series is used for training; the remaining 15% is used for evaluation.

Table 1 summarizes the LAMP-Trees that we trained, including the number of leaves and internal
nodes, as well as the number of datapoints per leaf and internal node. For example 30×4M leaves
means that the tree contains thirty leaves and that each leaf encompasses four million datapoints.

4.1 Indexing Time

We compare the indexing time of five LAMP-Trees to computing the AB-Matrix Profile Index directly.
We set the threshold for a match to a correlation value of 0.75, with p = 0.3 for retraining. Table 2
reports the speedup for the target dataset. LAMP-Trees with smaller leaf node training segments
and more overall nodes (e.g. 3L-4M) tend to show less speedup than the ones with larger leaf node
training segments and fewer overall nodes (e.g. 2L-40M). Moreover, if no match is found by a parent
node the search stops and its subtree is pruned. So, the indexing time is also affected by parent nodes’
prediction. For instance, in our experiment 2L-24M shows more speedup than 2L-40M, even though
it has more overall nodes. All speedups reported are in the 10-30× range.

4.2 Indexing Precision & Recall

We evaluate the accuracy of the LAMP-Tree (p = 0.3, threshold of 0.75) in terms of precision, recall,
and F1 score (the harmonic mean of precision and recall). We evaluated the LAMP-tree predictions by
comparing to the 4 highest correlated subsequences to the given query. Figure 3 reports the precision,
recall, and F1-score results for these experiments. Although there isn’t a significant difference in
accuracy between the LAMP-Trees, the general trend is that those with larger leaf node training
segments and fewer leaf nodes are the most accurate; this is because each leaf has a larger training
segmnent, leading to more accurate LAMP models. On the other hand, LAMP-Trees with smaller
leaf node segments lead to faster exact computation when a match occurs but they are less accurate
due to the less training data.

4



Acknowledgment

This work was supported in part by NSF Awards #1528181, #1763795, #1901379, and #1932254. P.
Brisk has a small equity stake in Shapelets, a company providing decision-support software for time
series. The authors declare no other competing interests.

References
[1] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A. Mueen,

and E. Keogh, “Matrix profile i: all pairs similarity joins for time series: a unifying view that
includes motifs, discords and shapelets,” in 2016 IEEE 16th international conference on data
mining (ICDM), pp. 1317–1322, Ieee, 2016.

[2] Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-C. M. Yeh, G. Funning, A. Mueen, P. Brisk, and
E. Keogh, “Matrix profile ii: Exploiting a novel algorithm and gpus to break the one hundred
million barrier for time series motifs and joins,” in 2016 IEEE 16th international conference on
data mining (ICDM), pp. 739–748, IEEE, 2016.

[3] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, Z. Zimmerman, D. F. Silva,
A. Mueen, and E. Keogh, “Time series joins, motifs, discords and shapelets: a unifying view that
exploits the matrix profile,” Data Mining and Knowledge Discovery, vol. 32, no. 1, pp. 83–123,
2018.

[4] Z. Zimmerman, K. Kamgar, N. S. Senobari, B. Crites, G. Funning, P. Brisk, and E. Keogh,
“Matrix profile xiv: Scaling time series motif discovery with gpus to break a quintillion pairwise
comparisons a day and beyond,” in Proceedings of the ACM Symposium on Cloud Computing,
pp. 74–86, 2019.

[5] F. Madrid, S. Imani, R. Mercer, Z. Zimmerman, N. Shakibay, and E. Keogh, “Matrix profile xx:
Finding and visualizing time series motifs of all lengths using the matrix profile,” in 2019 IEEE
International Conference on Big Knowledge (ICBK), pp. 175–182, IEEE, 2019.

[6] Y. Zhu, C.-C. M. Yeh, Z. Zimmerman, and E. Keogh, “Matrix profile xvii: Indexing the matrix
profile to allow arbitrary range queries,”

[7] Z. Zimmerman, N. Shakibay Senobari, G. Funning, E. Papalexakis, S. Oymak, P. Brisk, and
E. Keogh, “Matrix profile xviii: Time series mining in the face of fast moving streams using a
learned approximate matrix profile,” in 2019 IEEE International Conference on Data Mining
(ICDM), pp. 936–945, 2019.

[8] M. Karimi, A. Jahanshahi, A. Mazloumi, and H. Z. Sabzi, “Border gateway protocol anomaly
detection using neural network,” in 2019 IEEE International Conference on Big Data (Big
Data), pp. 6092–6094, IEEE, 2019.

[9] M. Linardi, Y. Zhu, T. Palpanas, and E. Keogh, “Matrix profile x: Valmod-scalable discovery of
variable-length motifs in data series,” in Proceedings of the 2018 International Conference on
Management of Data, pp. 1053–1066, 2018.

[10] N. S. Senobari, G. J. Funning, E. Keogh, Y. Zhu, C.-C. M. Yeh, Z. Zimmerman, and A. Mueen,
“Super-efficient cross-correlation (sec-c): A fast matched filtering code suitable for desktop
computers,” Seismological Research Letters, vol. 90, no. 1, pp. 322–334, 2019.

[11] J. Shieh and E. Keogh, “i sax: indexing and mining terabyte sized time series,” in Proceedings
of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 623–631, 2008.

[12] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh, “isax 2.0: Indexing and mining one billion
time series,” in 2010 IEEE International Conference on Data Mining, pp. 58–67, IEEE, 2010.

[13] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. Keogh, “Beyond one billion time
series: indexing and mining very large time series collections with isax2+,” Knowledge and
information systems, vol. 39, no. 1, pp. 123–151, 2014.

5



[14] K. Zoumpatianos, S. Idreos, and T. Palpanas, “Indexing for interactive exploration of big data
series,” in Proceedings of the 2014 ACM SIGMOD international conference on Management of
data, pp. 1555–1566, 2014.

[15] L. Zhang, N. Alghamdi, M. Y. Eltabakh, and E. A. Rundensteiner, “Tardis: Distributed indexing
framework for big time series data,” in 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pp. 1202–1213, IEEE, 2019.

[16] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for learned index structures,”
in Proceedings of the 2018 International Conference on Management of Data, pp. 489–504,
2018.

[17] N. C. E. D. Center, “Northern california earthquake data center.” HRSN (2014), High Resolution
Seismic Network. UC Berkeley Seismological Laboratory. Dataset. doi:10.7932/HRSN., 2014.

6


	Introduction
	Background Material & Related Work
	Proposed Method
	LAMP-Tree Queries (Inference)
	LAMP-Tree Training

	Experimental Results
	Indexing Time
	Indexing Precision & Recall


