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Abstract

Standard cell layouts in advanced technology nodes are done manually in the
industry today. Automating standard cell layouts is challenging because of the
exploding number and complexity of design rule checking (DRC), especially when
the design goal is to minimize cell area. In this paper we propose a machine
learning based approach to handle DRC constrains. In our approach, we apply
a genetic algorithm to create routing candidates and use reinforcement learning
(RL) to fix the design rule violations incrementally. A design rule checker provides
feedback on violations to the RL agent and the agent learns how to fix them based
on the data. This approach is also applicable to future technologies with unseen
DRCs. Based on this approach, we built a layout generator called NVCell that
includes a device placer based on a simulated annealing method and a router based
on a genetic algorithm and reinforcement learning. NVCell can generate layouts
with equal or smaller area for over 75% of cells in an industry standard cell library.

1 Introduction
Standard cells are the building blocks of digital VLSI design. Modern designs are constructed from
hundreds of millions of instances of standard cells. Large semiconductor companies and intellectual
property providers often have dedicated teams designing standard cell libraries for each technology
node. Each library usually consists of thousands of standard cells. The cell design objective is
minimizing cell width (cell height is fixed for each library) to improve area efficiency.

Today most industrial standard cell designs are still done manually. Automating standard cell layout
can not only speed up the design process, but also enable design and technology co-optimization
(DTCO), which simultaneously optimizes standard cells and chip designs to achieve better perfor-
mance.

Standard cell layout design automation includes two major steps: placement and routing. The
placement step places devices and assigns pin locations; the routing step connects device terminals
and pins based on net connectivity. The routing step is the more important and difficult step because
routing needs to satisfy design rule checking (DRC) constraints. In advanced technology nodes, not
only are the number of design rules exploding, but rules also have become more complex. Most new
complexity comes from rules that involve multiple layout shapes that were previously independent
from each other. Although mathematical optimization approaches based on Boolean satisfiability
problem (SAT) [14] and mixed-integer linear program (MILP) [17] have been proposed to automate
routing and achieved good results, these techniques depend on the assumption that all design rule
constraints can be expressed in mathematical forms such as conjunctive normal form for SAT or
linear inequality for MILP. It is not clear whether all the DRCs can be expressed efficiently in these
forms. A large number of constraints will have to be created to handle all DRCs, which makes it
difficult to scale to larger designs. Furthermore, these constraints will have to be rewritten by hand
for every new technology node or standard cell layout template.
Preprint. Under review.



Reinforcement learning (RL) has achieved impressive super-human performance in solving many
game like problems. We are interested in whether RL can also achieve super-human performance in
the routing task. We believe that the main advantage of RL over other mathematical optimization
methods such as SAT and MILP is that it does not require analytical formulation of the DRCs.
The constraints can be enforced by the reward given by a environment where DRC analysis runs
independently from the optimization. [9] proposed to apply Reinforcement Learning to the routing
problem directly, i.e. make the RL agent create routing actions for each wire where the action space
is a routing action (North, South, West, East) for each net. Instead of making the RL agent learn the
job of a maze router, which can be solved by many efficient algorithms [16], we propose to make it
learn how to fix DRCs on existing routes. We decompose the routing problem into two independent
steps: routing and DRC fixing. The sub-problem of DRC fixing is relatively easier for RL to learn
and it scales to large designs since DRC problems are local, while general routing requires global
information, especially for long routes.

Our key contributions are listed below:

• We build an automated layout generator: NVCell generates competitive layouts for over 75% of
cells in an industrial cell library on an advanced technology node. The widths of generated cells
are equal or less than the manual design.

• We propose a Reinforcement Learning based method to fix DRC errors given existing routes on
standard cells. Trained on one standard cell, the model is transferable to all the standard cells we
have tested in our library. The model can be further retrained on each cell to improve the results.

• We propose a simulated annealing based algorithm for device placement and pin assignment. It
performs both device pairing and placement concurrently to find an optimum placement.

• We propose a genetic algorithm based routing flow to find minimum routes and optimize the DRC
errors. Together with the RL based DRC fixer, it found routable DRC-clean cell layouts with
reduced widths compared to the best layouts found by expert layout engineers.

2 Prior Art
Prior placement techniques include heuristic based methods, exhaustive search based methods, and
mathematical programming based methods. The heuristic based methods [19] first find all possible
chains in the circuit, i.e. devices that can share diffusions consecutively, and then select a number
of chains that cover all the devices. The exhaustive search based methods [17] [8] go through all
possible device placement configurations and might use branch and bound or dynamic programming
techniques to speedup the search process. The mathematical programming based methods [11] [7]
leverage MILP or SAT algorithms to find optimal device placement. It has been shown that these
placement techniques can generate good placement solutions. However, for our implementation,
we prefer a technique that can adapt to custom layout constraints and is also easy to implement.
Therefore we propose to use simulated annealing to perform placement.

Prior routing techniques include channel routing, SAT, and MILP based routing methods. Channel
routing algorithms have been proposed to do standard cell routing early on [19]. However, commonly
used deterministic channel routing methods such as LEA, Dogleg, Greedy, YACR2, etc. [16], only
generate a particular routing solution and do not handle DRCs well. SAT based routing [14] creates
candidate routes for each terminal pair and leverages SAT to find feasible routing candidates for
all terminal pairs. It requires DRC checks to prune all conflicting routing candidates. The quality
of routing candidates also limits the final routing quality. Therefore it often can not find routing
solutions for complicated cells. MILP based routing methods [17][8] formulate the routing problem
as a mixed integer linear programming problem. It is capable of routing very complex cells in a
7nm process technology. This method, however, relies on a MILP solver to solve a large number of
constraints and requires DRCs to be expressed in conditional equality or inequality form. This makes
supporting newer technology nodes difficult. [6] uses a combination of MILP and rip-up-reroute
techniques to route, which would have similar issues to those mentioned previously.

RL has achieved great successes in playing games such as Atari and GO. Recently RL has also been
proposed to handle placement and routing problems. [12] leverages RL to place macros. [10] uses
Deep Q Learning (DQN) [13] to create routing direction action, i.e. going north, south, etc at each
step. [9] uses the attention model-based REINFORCE[18] algorithm to select routing orders and
uses a pattern router to generate actual routes once a routing order is determined. [3] leverages both
Monte carlo tree search (MCTS) and neural network based directional action to find routes. Most of
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Figure 1: DRC RL Model Architecture

these approaches only aim to connect the routes without consideration of design rule violations. It is
not obvious how to extend those methods to handle DRCs for advanced technology nodes. Previous
machine learning approaches on DRC focus on predicting DRC from early design states, e.g [5]
proposes to predict final DRC from macro floorplan.

3 Method
Placement: Given a set of PMOS and NMOS devices, the goal of placement is to place them on the
PMOS row and NMOS row of the cell layout while satisfying technology constraints. In addition to
device placement, cell pin locations should also be specified during placement.

Previous placers often separate placement into two steps: pairing and ordering. The pairing step
pairs up each PMOS device with a NMOS device to form device pairs. The ordering step generates
placement order of device pairs. And the final placement can be inferred from placement order and
pairs. These two steps are interdependent, so solving one after the other is sub-optimal. Therefore we
design a simulated annealing based algorithm that does both pairing and ordering simultaneously.

Simulated annealing makes moves on a placement representation which specify the placement order
of pins, ordering of NMOS and PMOS devices, and whether to flip a device orientation (switching
the source and drain positions). It optimizes a scoring function which is a weighted sum of cell width,
congestion estimation and technology constraint violations. These moves can be categorized either by
the types of moves or by the targeted devices of the moves. The Flip changes all targeted devices flip
flag. The Swap swaps targeted devices. The Move moves targeted devices to a specific location. The
target devices can be either consecutive PMOS devices, consecutive NMOS devices, a consecutive
PMOS/NMOS device pair, or pins.

The simulated annealing algorithm is implemented based on the modified Lam annealing schedule
[2] that requires no hyper-parameter tuning.

Routing has two steps: a genetic algorithm-based routing step and a RL-based DRC fixing step. The
genetic algorithm drives a maze router to create many routing candidates, and the DRC RL agent
reduces the number of DRCs of a given routing candidate.

The DRC RL agent only fixes M1 DRC errors. M1 is the lowest routing layer with the most difficult
DRC issues. Other DRC errors can be easily pruned out during maze routing. The RL game is to
incrementally add additional M1 routing segments in order to reduce M1 DRCs. The observation
space of the game includes the routes in M1, the DRC positions, and routing mask. The action space
is the M1 grid that will be routed next. The rewards include a small negative reward given at each
step and a large positive reward associated with DRC reduction.

We use the Proximal Policy Optimization (PPO) [15] algorithm to implement the RL agent. To build
the policy and value networks for PPO, we need to consider two requirements: first it should be
invariant to the number of nets, and second it should be invariant to the cell width, i.e. WM1. Cell
height HM1 is a constant for a given library. Our network design is shown in Figure 1.

The genetic algorithm based routing algorithm uses routing segments as the genetic representation
in that it ensures that good routing islands in the routing structure are preserved during genetic
operations such as crossover and mutation. The fitness of each individual chromosome in a generation
is evaluated based on two metrics: the number of unrouted terminal pairs and the number of DRCs.
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Algorithm 1 NVCell Routing Flow

Input: nets N, net terminals Tn, generations G, population K
Output: DRC free routing candidates R

create the terminal pair set P
Maze route initial routing candidates {R1, ...,Rk} for the first generation with random order
for g ← 1 to G do

for i← 1 to K do
select Rdad and Rmom from {R1, ...,Rk}
R′ ← crossover(Rdad,Rmom)
R′ ← mutate(R′)
R′

i ←Maze route unrouted pairs with random order
run RL DRC fixer on route R′

i

DRC(R′
i)← remaining DRCs

if DRC(R′
i) == 0 then

return R′
i

{R1, ...,Rk} ← Top K fitness from {R′
1, ...,R′

k,R1, ...,Rk}

Other metrics can be also added into fitness function, such as total wiring cost or Design For
Manufacturing (DFM) metrics. The complete routing flow is shown in Algorithm 1.

4 Results
NVCell is implemented with Python and runs on a server with multiple Intel Xeon CPUs where a
maximum of 20 threads are used in the implementation. It generates a simplified grid-based cell
layout, which is given to a separate Perl program called Sticks to handle DRC checking and conversion
to tapeout quality Cadence Virtuoso layout. NVCell produces LVS/DRC clean cells for over 75% of
a total of over 1000 single-row standard cells on an industrial standard cell library (multi-row cells
are not currently supported by our Sticks program). Even more cells can be successfully generated if
we relax the width optimization during placement. 22% of these generated cells have shorter width
(between 1 to 8 poly columns) than the same cells in the library, and the rest have the same width.
Although not all the cells in the library are designed to have minimum width, we did find meaningful
size reduction on some critical arithmetic logic cells and flip-flops. This result shows that NVCell
can produce cell layouts competitive with human designers.

For runtime, most of cells run within seconds to a few minutes. The largest cells finish in a couple
of hours. We expect to significantly reduce the runtime when the implementations of NVCell and
Sticks are switched from Python/Perl to C++.

The DRC RL agent implementation is based on the stable-baselines [4] PPO2 (GPU-enabled
implementation of PPO) algorithm. The RL environment is implemented based on the OpenAI GYM
[1] framework. The training is conducted on a NVIDIA V100 GPU. We train the agent based on a
19-poly wide flip-flop cell. The environment is initialized with maze routing of all the nets within
the cell based on a random net order. Note that the PPO2 algorithm runs multiple environments
in parallel, and each environment resets with a new random net order, so the agent will see many
different initial routes and different DRC errors.

Although trained on only one cell, the model is actually transferable to all the cells we have experi-
mented with. Figure 2 shows the Stick diagram of both initial routes and routes after DRC fixing for
a 35-poly wide specialty flip-flop. The DRC violations, indicated by dotted red lines on Figure 2(a),
only appear between tracks that are within a certain distance, forming local patterns. These local
DRC patterns can therefore be identified by the convolution networks within the RL agent to produce
the policy. Because we train the model with many random routes, even only trained on one cell, the
agent already sees many different routing configurations, which results in many DRC patterns. These
DRC patterns are also invariant between different regions in the same cell or different cells and is
why the trained model is transferable to new cells not seen during training.

5 Conclusions
We demonstrate that RL can be leveraged to fix standard cell routing DRCs incrementally from
existing routes in an advanced technology node. Together with a genetic algorithm and simulated
annealing, we build a standard cell layout generator NVCell that can generate competitive layouts for
a majority of cells in a standard cell library.
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(a) Genetic algorithm generated routes with DRC. Dotted red lines show M1 DRC violations.
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(b) Routes after DRC fix by the RL agent.
Figure 2: Layouts of a 35-poly wide specialty flip-flop
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