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Abstract

We present PROGRAML† – Program Graphs for Machine Learning – a language-
independent, portable representation of program semantics that enables analysis
through deep learning. We benchmark the capabilities of PROGRAML using tra-
ditional data flow analyses that are fundamental to compiler optimizations. We
assemble a dataset of 461k Intermediate Representation (IR) files for LLVM, cov-
ering five source programming languages, and 8.5B classification labels. By for-
mulating data flow analysis as an MPNN, we show that standard analyses can be
learned, significantly outperforming state-of-the-art approaches.

1 Introduction

Compiler architects increasingly look to machine learning when building heuristics for compiler
optimization. The promise of automatic heuristic design, freeing the compiler engineer from the
complex interactions of program, architecture, and other optimizations, is alluring. However, most
machine learning methods cannot replicate even the simplest of the abstract interpretations of data
flow analysis [1] that are critical to making good optimization decisions. This must change for
machine learning to become the dominant technology in compiler heuristics.

Data flow algorithms act on abstract interpretations of the program, propagating information of in-
terest through the program’s control-flow graph until a fixed point is reached [2]. Prior machine
learning works, on the other hand, have typically represented the entirety of the program’s behavior
as a fixed-length, statically computed feature vector, or as a sequence of syntactic tokens [3]. Such
representations are unsuited to learning abstract interpretations of programs and so cannot avoid triv-
ial pitfalls such as the addition of dead code [4], which changes the representation without changing
the program’s behavior or its response to optimizations. We refer readers to Appendix A for details
of the data flow analyses used in this paper.

We propose overcoming the limitations of current machine learning techniques by making the pro-
gram’s control, data, and call dependencies a central part of the program’s representation and a pri-
mary consideration when processing it. We achieve this by seeing the program as a graph in which
individual statements are connected to other statements through relational dependencies. Each state-
ment in the program is understood only in the context of the statements interacting with it. Through
relational reasoning [5], a latent representation of each statement is learned that is a function of not
just the statement itself, but also of the (latent) representations of its graph neighborhood. Notably,
this formulation has a striking similarity to the IRs used by compilers, and the iterative propagation
of information resembles the transfer functions and meet operators in traditional data flow analy-
ses [1]. Recently proposed techniques for learning over graphs have shown promise in a number of
domains [6, 7]. With a suitable representation and graph-based model, we extend these approaches
to the domain of compiler analysis, enabling downstream tasks built on top of such graph models to
natively incorporate reasoning about data flow into their decision making.
∗Both authors contributed equally.
†Code and data available at: https://chriscummins.cc/programl
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We make the following contributions:

• We propose a portable, language-independent representation of programs derived from
compiler IRs. PROGRAML is the first representation to capture whole-program control-,
data-, and call relations between instructions and operands as well as their order and data
types. PROGRAML is a compiler-agnostic design for use at all points in the optimization
pipeline; we provide implementations for LLVM and XLA IRs.

• We introduce a benchmark dataset that poses established compiler analysis tasks as su-
pervised machine learning problems. DEEPDATAFLOW comprises five tasks and is con-
structed from 461k real-world program IRs covering a diverse range of domains and source
languages, totaling 8.5 billion data flow analysis classification labels.

• We adapt Gated-Graph Neural Networks (GGNN) to the PROGRAML representation. We
show that, within a bounded problem size, our approach achieves ≥ 0.939 F1 score on all
analysis tasks, a significant improvement over state-of-the-art learning techniques.

2 Related Work

Data flow analysis is a long established area of work. Despite its central role, there has been limited
work in learning such analysis. [8] use ASTs and code synthesis to learn rule-sets for static analyses,
some of which are dataflow-related. Our approach does not require a program generator or a hand-
crafted DSL for rules. [9] use dynamic information (e.g., register snapshots) from instrumented
binaries to embed an assembler graph representation. We propose a static approach that does not
need runtime features. [10] use a graph embedding of a Static Single Assignment (SSA) form
to generate invariants. The lack of function call/return edges means that the representation is not
suitable for interprocedural analysis as it stands. [11] explore a large-scale, context-dependent vector
embedding. This is done at a token level, however, and is unsuited for dataflow analysis. IR2Vec [12]
models part-of-statements as relations. However, in order to compute the values of the embeddings,
IR2Vec requires access to the type of data flow analyses that our approach learns from data alone.

Recently there have been attempts to develop program representations that allow fine-grain reason-
ing. However, representations based on source code and its direct artifacts [13, 14, 15, 16, 17] put
unnecessary emphasis on naming and stylistic choices that may not correlate with the functionality
of the code. Approaches based on IRs [18, 19, 20, 21] remove such noise but fail to capture infor-
mation about the program that is important for analysis, e.g. variables [20] and [18] commutativity.
In both cases, models are expected to reason about the flow of information in programs using repre-
sentations that do not directly encode this information. Clearly, a program representation is needed
that enables machine learning algorithms to reason about the execution of a program by developing
its own data flow analyses.

3 A Graphical Representation for Deep Program Analysis

We present PROGRAML, a novel IR-based program representation that closely matches the data
structures used traditionally in data flow analysis and can be processed natively by deep learning
models. We represent programs as directed multigraphs where instructions, variables, and constants
are vertices, and relations between vertices are edges. Edges are typed to differentiate control-, data-,
and call-flow. Additionally, we augment edges with a local position attribute to encode the order of
operands to instructions, and to differentiate between divergent branches in control-flow.

We construct a PROGRAML graph G = (V,E) by traversing a compiler IR. An initially empty
graph G = ∅ is populated in three stages: control-flow, data-flow, and call-flow, shown in Figure 1.

(I) Control Flow We construct the full-flow graph of an IR by inserting a vertex for each instruc-
tion and connecting control-flow edges (Fig. 1a, 1b). Control edges are augmented with a numeric
position using an ascending sequence based on their order in the list of an instruction’s successors.

(II) Data Flow We introduce constant values and variables as graph vertices (Fig. 1c). Data-flow
edges are inserted to capture the relation from constants and variables to the instructions that use
them as operands, and from instructions to produced variables. Data edges have a position attribute
that encodes the order of operands for instructions.
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define i32 @Fib(i32) #0 {
   switch i32 %0, label %3 [
     i32 0, label %9
     i32 1, label %2
   ]
; <label>:2:
   br label %9
; <label>:3:
   %4 = add nsw i32 %0, -1
   %5 = tail call i32 @Fib(i32 %4)
   %6 = add nsw i32 %0, -2
   %7 = tail call i32 @Fib(i32 %6)
   %8 = add nsw i32 %7, %5
   ret i32 %8
; <label>:9:
   %10 = phi i32 [1, %2], [%0, %1]
   ret i32 %10
}

int Fib(int x) {
 switch (x) {
  case 0: 
   return 0;
  case 1:
   return 1;
  default:
   return Fib(x - 1) 
        + Fib(x - 2);
 }
}

Input

IR

(a) The input program is passed through the
compiler front-end to produce an IR. In this ex-
ample, LLVM-IR is used.
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br
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1

add

2

ret call

add

call

add

ret

(b) A full-flow graph is constructed of instruc-
tions and control dependencies. All edges have
position attributes; for clarity, we have omitted
position labels where not required.
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(c) Vertices are added for data elements (ellipti-
cal nodes are variables, diamonds are constants).
Data edges capture use/def relations. i32 indi-
cates 32 bit signed integers. Numbers on edges
indicate operand positions.
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phi
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add
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ret

i32

call
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(d) Functions have a single entry instruction and
zero or more exit instructions. Call edges are in-
serted from call sites to function entry instruc-
tions, and return-edges from function exits to
call sites.

Figure 1: PROGRAML construction from a Fibonacci implementation using LLVM-IR.

(III) Call Flow Call edges capture the relation between an instruction that calls a function and
the entry point of the called function (Fig. 1d). Return edges are added from each of the terminal
instructions of a function to the calling statement. For IRs that support external linkage, an additional
vertex is created representing an external call site and connected to all externally visible functions.

4 Graph-based Deep Learning for Program Analysis

We formulate our system in a Message Passing Neural Network (MPNN) framework [22, 23].
Our design mimics the transfer functions and meet operators of classical iterative data flow analy-
sis [2, 24], replacing the rule-based implementations with learnable analogues (message and update
functions). Our model is an adaptation of GGNN [22] that consists of three logical phases: input
encoding, message propagation and update, and result readout.

(I) Input Encoding Starting from the augmented graph representation G = (V,E), we capture
the semantics of the program graph vertices by mapping every instruction, constant, and variable
vertex v ∈ V to a vector representation h0v ∈ Rd by lookup in a fixed-size embedding table. The
mapping from vertex to learnable embedding vector f : v 7→ h0v must be defined for each IR.

For LLVM-IR, we construct an embedding key from each vertex using the name of the instruction,
e.g., store, and the data type for variables and constants, e.g., i32* (a pointer to a 32-bit integer). In
this manner we derive the set of unique embedding keys for training and deployment using the graph
vertices of a training set of LLVM-IRs. An unknown element embedding is used during deployment
to map embedding keys which were not observed in the training data. The embedding vectors are
trained jointly with the rest of the model.
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(a) REACHABILITY (b) DOMINANCE (c) DATADEP (d) LIVENESS

+ + - + + -

(e) SUBEXPRESSIONS

Figure 2: Example input-output graphs for each of the five DEEPDATAFLOW tasks. A single vertex
is randomly selected from as the starting point for computing analysis results, indicated as the blue
node. Each output vertexis annotated with a binary value after the analysis has completed. As a
supervised classification task, the goal is to predict the output vertex labels given an input graph.
These small graphs are illustrative, DEEPDATAFLOW graphs comprise an average 581 vertices.

(II) Message Propagation Each iteration step is divided into a message propagation step followed
by a vertex state update. Received messages M(ht−1w , ewv) are a function of neighboring states and
the respective edges. Messages are mean-aggregated over the neighborhood after transformation
with a custom position-augmented transfer function that scales hw elementwise with a position-
gating vector p(ewv):

M(ht−1w , ewv) =Wtype(ewv)

(
ht−1w � p(ewv)

)
+ btype(ewv)

The position-gating p(ewv) = 2σ(Wp emb(ewv)+ bp) is implemented as a sigmoid-activated linear
layer mapping from a constant sinusoidal position embedding [25, 26]. It enables the network to
distinguish non-commutative operations such as division, and branches of diverging control-flow.
We add backward edges for each edge in the graph as separate edge-types to allow for reverse-
propagation of information, which is necessary for backward compiler analyses. In all our experi-
ments, we employ Gated Recurrent Units (GRU) [27] as our update function.

Step (II) is iterated T times to extract vertex representations that are contextualized with respect to
the given graph structure.

(III) Result Readout We support per-instruction and per-variable classification tasks using a read-
out head on top of the iterated feature extraction, mapping, for each vertex, the extracted vertex
features hTv to probabilities Rv(h

T
v , h

0
v) = σ

(
f(hTv , h

0
v)
)
· g(hTv ), where f(·) and g(·) are linear

layers and σ(·) is the sigmoid activation function.

5 Learning Data Flow Anlayses

We pose a suite of data flow analyses as supervised learning tasks. These particular data flow
analyses can already be perfectly solved by non-ML techniques. Here, we use them to benchmark
the capabilities of machine learning techniques for reasining about optimizations.

Dataset We assembled DEEPDATAFLOW, a 256M-line corpus of LLVM-IR files from a variety
of sources and produced labeled datasets using five traditional data flow analyses, described in Ap-
pendix A. Each of the 15.4M analysis examples consists of an input graph in which a single vertex
is annotated as the root node for analysis, and an output graph in which each vertex is annotated with
a binary label corresponding to its value once the data flow analysis has completed (Fig. 2). A 3:1:1
ratio is used to divide the examples for the five problems into training, validation, and test instances.
We release DEEPDATAFLOW for open use.

Models We evaluate the effectiveness of our approach against two contrasting state-of-the-art ap-
proaches for learning over programs: inst2vec [18], an LSTM-based approach for whole-program
classification that we extend to per-variable predictions, and CDFG [20], a graph-based approach.

For CDFG and PROGRAML we use 32 dimensional embeddings as in [20]. Input vertex-selectors,
encoded as binary one-hot vectors, are used to mark the starting point for analyses and are concate-
nated to the initial random embeddings. MPNNs typically use a small number of propagation steps
out of practical consideration for efficiency [23, 22, 20]. In contrast, data flow analyses iterate until
a fixed point is reached. In this work we iterate for a fixed number T of message passing steps
and exclude from the training set graphs for which a traditional implementation of the analysis task
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Table 1: F1 scores for data flow analysis.

Analysis Example Optimization inst2vec CDFG PROGRAML
DDF-30 DDF-30 DDF-30 DDF-60 DDF

Reachability Dead Code Elimination 0.012 0.998 0.998 0.997 0.943
Dominance Global Code Motion 0.004 0.999 1.000 0.991 0.123
DataDep Instruction Scheduling — — 0.997 0.993 0.965
Liveness Register Allocation — — 0.937 0.939 0.625
Subexpressions Global Common Subexpression Elimination 0.000 0.009 0.996 0.967 0.959

requires greater than T iterations to solve. We set T = 30 for training all models, using 1M graphs,
evaluated on a fixed 10k validation set at 10k intervals for the first 50k training graphs, and at 100k
intervals thereafter. The checkpoint with the greatest validation F1 score is used for testing.

5.1 Evaluation

Vocabulary Coverage Each of the three approaches uses a vocabulary to produce embeddings
that describe the instructions and operands of a program. Our approach to deriving a vocabulary
from training graphs provides 98.3% coverage of programs in the test set, an improvement of 2.9×
and 2.1× over the vocabularies used by inst2vec and CDFG, respectively.

DDF-30 We initially limit our testing to the subset of each task’s test set which can be solved
using a traditional analysis implementation in ≤ 30 steps, denoted DDF-30. Table 1 summarizes
the performance of inst2vec, CDFG, and PROGRAML. The relational representation of our ap-
proach shows excellent performance. Neither CDFG or inst2vec representations enable per-variable
classification, so are incapable of the DATADEP and LIVENESS tasks. CDFG, which also captures
control-flow, achieves comparable performance on two of the tasks. However, the lack of operand
vertices, positional edges, and data types renders poor performance on the SUBEXPRESSIONS task.
PROGRAML correctly labels 4.50× and 1.12× more nodes than the state-of-the-art approaches.

DDF-60 and DDF The DDF-30 set excludes 28.7% of DEEPDATAFLOW graphs that require more
than 30 steps to compute ground truth labels. To test whether the learned models can generalize to
solve larger problems, we repeated the experiments using the DDF-30 models on on all graphs which
require ≤ 60 analysis steps (excluding 19.6%), doubling the number of inference steps. We observe
that performance is consistent on this larger problem set, demonstrating that MPNNs generalize
to problems larger than those they were trained on. Finally, we test the DDF-30 models on all
graphs, shown as DDF. We use T = 200 inference message passing iterations to test the limits of
stability and generalization. We see substantial degradations of model performance in line with two
challenges of forumlating data flow analysis in an MPNN framework: first, that using a fixed number
of message passing iterations across each and every edge leads to unnecessary work for problems
that can be solved in fewer iterations or by propagating only along a dynamic subset of the edges
at each timestep (the maximum number of steps required by a graph in DDF is 28,727). Second,
models that compute correct results for a graph when processed for an appropriate number of steps
may prove unstable when processed for an excessively large number of steps. We believe that
dynamically-sparse message passing strategies and an adaptive number of iterations could address
these scalability challenges. We will pursue an extension to the MPNN formulation in future work.

6 Conclusions

The evolution of ML for compilers requires more expressive representations. We show that current
techniques cannot reason about simple data flows which are at the core of all compilers. We present
PROGRAML, a graph-based representation of programs derived from compiler IRs that enables
enhanced program reasoning through machine learning1. We are releasing the DEEPDATAFLOW
dataset as a community benchmark for evaluating approaches to learning over programs. PRO-
GRAML and DEEPDATAFLOW open up new directions for research towards more flexible and use-
ful program analysis. PROGRAML outperforms the state-of-the-art, but is limited by scalability
issues imposed by MPNNs. As future work, we will investigate how MPNNs could be improved to
learn efficient and stable fixed-point algorithms, regardless of input graph size.

1In prior work we show improved performance on downstream optimization reasoning tasks [28].
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A Data Flow Analysis

Data flow analysis is an iterative technique for gathering information about possible sets of values
at various points in a computer program. The value sets and iteration rules depend on the particular
analysis being performed. Our initial release of Deep Data Flow contains five data flow analyses:

(I) REACHABILITY: Reachable Instructions Control reachability is a fundamental compiler
analysis which determines the set of points in a program that can be reached from a particular
starting point. Given succ(n), which returns the control successors of an instruction n, the set of
reachable instructions starting at root n can be found using forward analysis:

Reachable(n) = {n} ∪p∈succ(n) Reachable(p) (1)

(II) DOMINANCE: Instruction Dominance Instruction n dominates statement m if every
control-flow path the from the program entry n0 to m passes through n. Like reachability,
this analysis only requires propagation of control-flow, but unlike reachability, the set of domi-
nator instructions are typically constructed through analysis of a program’s reverse control-flow
graph Lengauer1979,Blazy2015:

Dom(n) = {n} ∪ (∩p∈pred(n)Dom(p)) (2)

Where pred(n) returns the control predecessors of instruction n. We formulate the DOMINANCE
problem as: Given a root instruction vertex n, label all vertices m where n ∈ Dom(m).

(III) DATADEP: Data Dependencies The data dependencies of a variable v is the set of pre-
decessor instructions that must be evaluated to produce v. Computing data dependencies requires
traversing the reverse data-flow graph:

DataDep(n) = defs(n) ∪ (∪p∈defs(n)DataDep(p)) (3)

Where defs(n) returns the instructions that produce the operands of n.

(IV) LIVENESS Live-out variables A variable v is live-out of statement n if there exists some
path from n to a statement that uses v, without redefining it. Given uses(n), which returns the
operand variables of n, and defs(n), which returns defined variables, the live-out variables can be
computed forwards using:

LiveOut(n) = ∪s∈succ(n)uses(s) ∪
(
LiveOut(s)− defs(s)

)
(4)

(V) Global Common Subexpressions The identification of common subexpressions is an impor-
tant analysis for optimization. For compiler IRs we define a subexpression as an instruction and its
operands, ordered by either their position (for non-commutative operations), or lexicographically
(for commutative operations). We thus formulate the common subexpression problem as: Given an
instruction (which forms part of a subexpression), label any other instructions in the program which
compute the same subexpression. This is an inter-procedural analysis, though operands must obey
their scope. Common subexpressions are typically identified using available expression analysis:

Avail(n) = uses(n) ∪ (∩p∈pred(n)Avail(p))− defs(n) (5)

Where uses(n) return the expressions used by instruction n, and defs(n) returns the expressions
defined by n.
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