
Resonance: Replacing Software Constants with
Context-Aware Models in Real-time Communication

Jayant Gupchup, Ashkan Aazami, Yaran Fan, Senja Filipi, Tom Finley, Scott Inglis,
Marcus Asteborg, Luke Caroll, Rajan Chari, Markus Cozowicz, Vishak Gopal, Vinod Prakash,
Sasikanth Bendapudi, Jack Gerrits, Eric Lau, Huazhou Liu∗, Marco Rossi, Dima Slobodianyk,

Dmitri Birjukov, Matty Cooper, Nilesh Javar, Dmitriy Perednya,
Sriram Srinivasan, John Langford, Ross Cutler, Johannes Gehrke

Microsoft

Abstract

Large software systems tune hundreds of ‘constants’ to optimize their runtime
performance. These values are commonly derived through intuition, lab tests, or
A/B tests. A ‘one-size-fits-all’ approach is often sub-optimal as the best value de-
pends on runtime context. In this paper, we provide an experimental approach to
replace constants with learned contextual functions for Skype- a widely used real-
time communication (RTC) application. We present Resonance, a system based
on contextual bandits (CB). We describe experiences from three real-world exper-
iments: applying it to the audio, video, and transport components in Skype. We
surface a unique and practical challenge of performing machine learning (ML) in-
ference in large software systems written using encapsulation principles. Finally,
we open-source FeatureBroker, a library to reduce the friction in adopting ML
models in such development environments.

1 Introduction
Hyperparameter tuning of ML models using automation has a very rich literature [9, 2, 18, 8, 10, 17].
However, tuning of application constants such as buffer sizes, thresholds, or timeout settings is
commonly done manually. Tuning these constants in live production systems requires overcoming
many practical hurdles. In this paper, we study these challenges for a widely used RTC application.

Motivating Example: Consider a video conference call in Skype 2 where one of the participants is
using an unstable network. In Skype, if the endpoint stops receiving media packets, the application
attempts to “reconnect” the call on an alternate interface (e.g., WiFi interface stops working, but 4G
network is active). The reconnect threshold constant represents a careful trade-off. If the switch is
triggered too early, the user’s connection is unnecessarily moved into the “call reconnecting” status
and starts to renegotiate all call parameters, leading to a false positive (a disruptive experience). If
the application waits too long, the user loses patience and hangs up due to frustration. Furthermore,
we found mobile users tend to hang up more quickly than desktop users, indicating the contextual
nature of this problem as shown in Figure 1.

Literature: Recently, a few solutions and systems have emerged to address some of these chal-
lenges. Carbine et al. present SmartChoices, an API to replace heuristics in traditional algorithms
with ML models built using standard reinforcement learning (RL) methods [5]. SmartChoices
demonstrated the effectiveness on search, sort (pivot index), and cache algorithms. There are ex-
amples of applying RL-based methods in the query optimization and job scheduling domains, re-
spectively [14, 11]. To replace runtime constants, we employ a simpler approach of CB as we found

∗Now with Outreach. Work performed while at Microsoft.
2The ideas in this paper are applicable and generalize to the Microsoft Teams application too.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Figure 1: The left figure shows the Network Reconnect feature in Skype. The right figure shows the
impact of trigger threshold on average call duration (ACD). 3

it to scale effectively in our production scenarios compared to RL. By definition, a system deployed
with a fixed constant does not capture any data on its performance for different values of that con-
stant. The explore/exploit approach of CB methods offer a simple way to collect system response
for different values of the constant, and learn a model to replace a constant (or a heuristic) based
on application context [4, 3, 7]. Furthermore, a CB-based approach has the advantage of handing
population drift as a certain percentage of traffic is reserved for exploration. Bakshy et al. describe
Ax, a CB-based optimization and experimentation system for learning parameters at Facebook [3].
In Resonance, we address a novel and practical challenge of ML inference in real-world systems
when context information is trapped behind API surfaces. Addressing this challenge in a production
system sets our work apart from previous work applying CB models for tuning heuristics.

Inference Challenges: Large production software systems comprise of components interacting via
strict API boundaries (or contracts). This encapsulation creates isolation, making it difficult to
surface context (or features) to be consumed by other components for runtime inference (detailed
example in Section 2). A naive approach requires several layers of API changes and alignment
that result in the breaking of established contracts. We find that these high development costs were
a big driver for the lack of adoption (or integration) of CB models relying on distributed context.
It is noteworthy that this challenge is not unique to CB models, but rather any model requiring
access to features distributed in siloed components. To scale adoption, we created a library called
FeatureBroker that was able to address these challenges and bring down integration costs from 2
months to 2 days. It is noteworthy that the challenges addressed by FeatureBroker are applicable to
many software systems, particularly large codebases that ship with 1000s of system constants.

Contributions: This paper makes the following contributions:

• We outline Resonance, an experimental system to replace constants with CB models for RTC
scenarios.

• We detail FeatureBroker, a library for managing the conversation between an inference engine and
distributed features produced by components. We make this library open source for the benefit of
the community [15].

• We present results from applying FeatureBroker to optimize Skype’s audio, video, and transport
components in production (Section 3).

2 Resonance
System Overview: Resonance comprises of the following components: Skype App, A/B test sys-
tem, Client Inference (CI) and Learning Service (LS) as described in [1]. The benefit of replacing an
App constant is evaluated as an A/B test; the control variant represents the fixed constant, whereas
the treatment variant is represented by a CB model built using VowpalWabbit (VW) – a well known
open source library for CB models [12]. The CI component performs runtime inference based on
the App context as specified by the model. The CI component captures training logs comprising of
{context value, recommended action, action probability, reward metric} and transmits them to the
LS. The LS uses these training logs to produce a VW models (or policies) that get delivered to the
client endpoints periodically (e.g., every 4 hours) completing the inference-log-learn loop.

3Figure drawn for illustration by modeling data gathered from real telemetry.

2

/ / I n f e r e n c e w i t h o u t F e a t u r e B r o k e r
jbHysteresis = model . predict ([

FeatureStore . GetValue ("nwType") ,
FeatureStore . GetValue ("platform") ,
FeatureStore . GetValue ("callType")]) ;

Figure 2: Left figure shows the organization of components within Skype’s RTC stack; illustrating
the distributed nature of features in a well-encapsulated system. The right figure shows the inference
performed in the absence of a library like FeatureBroker.

In this paper, we focus our attention on the novel FeatureBroker client library. In our explanations,
we define context as a collection of feature values (e.g., network type = WiFi, platform = mobile).

Feature Broker: We motivate the need for such a library by way of an example. Consider we want
to replace a constant jbHysteris in the audio component with the output of a CB model. A simple
API to do that is shown in Figure 2 (right side).

While this API looks simple, practical problems emerge when performing inference using this ap-
proach. In this scenario, the context depends on the global state of the system, such as the platform
(e.g., desktop/wired), the network type (e.g., wired/WiFi), and call modality (e.g., audio/video). Fig-
ure 2 (left side) shows the logical organization of components within our RTC application. While
call modality information is available within the audio component, platform and network type infor-
mation were produced in different components. Moreover, the audio and platform/transport compo-
nents were separated by many other components and API surfaces. This situation where the features
of interest are encapsulated in well-separated components was found to be a common pattern. Com-
ponent owners want well-defined, stable public API surfaces for maintenance reasons. In addition,
expanding them on a feature-by-feature basis is onerous. Furthermore, the components producing
the features may not be running in the same thread as the component performing inference, and
lastly, the changes in feature values at runtime (e.g., a mid-call change in network type) would
require updating the prediction gracefully.

The idea of a simple shared thread-safe key-value feature store proved insufficient for two primary
reasons:

1. Coherence: Inference libraries need feature values to be stable and consistent. However, as seen
above, feature values can update asynchronously (e.g., network type can change mid-call).

2. Hierarchy: Features may be consumed by multiple models and inference components. For ex-
ample, three models (JBHysteresis, ScreenshareEncoding and NetworkReconnect) may consume
platform and network type features while having their own local features (e.g., call modality).
The most graceful way to handle this was to make the structure hierarchical and allow it to be
“forked” for sub-components.

The shared structure responsible for handling these problems is termed FeatureBroker. It manages
the conversation between the client code that provides features (inputs) and consumes inference
results (outputs) from a CB model. In this paper, it would be impossible to describe the library in
detail. Instead, we highlight the main elements of the solution. Interested readers can see a detailed
real-world example in the open-source version of the library FeatureBroker [15]. The key operations
of the FeatureBroker are:

1. Binding Inputs: Given a name and type returns an “input pipe” into which a feature providing
component can feed values.

2. Associating Models: Register and describe a scheme for transforming inputs to outputs.
3. Binding Outputs: Returns an “output pipe” in which inference consuming models can query for

updated values.
The notion of binding draws parallels to binding values for form elements obtained from a database
[13]. Finally, it is noteworthy that FeatureBroker can be used with any inference library (e.g.,
ONNX [16]) and this concept generalizes to any inference scenario where features are distributed
across components. Detailed examples can be found online [15].

3

Experiment Name Audio Jitter Buffer Screen Share Encoding Network Reconnect

Platforms Desktop {Desktop, Mobile} {Desktop, Mobile}
Impressions (Millions) 4M 7.6M 19M
RTC Component Audio Video Transport
Number of Actions 10 10 5
Unique Contexts 14 440 390
Metric Poor-Audio-rating Poor-Video-rating Call Duration (CD)
Model Size 4 KB 22 KB 10 KB
Metric Improvement (%) 1.1% 9.9% 4.2%

Table 1: The table captures the overall Summary results from experiments conducted on the repre-
sentative scenarios.

3 Experimental Results
We present results from three scenarios in Skype. The scenario related to learning the reconnect
threshold was described in Section 1. We introduce two other scenarios.

Scenario: Audio Jitter Buffer (JB) Hysteresis The JB component absorbs variability in network
packet arrivals (i.e., jitter) to present a smooth playout of audio frames transmitted via the network.
JBHysteresis is a meta-parameter controlling the amount of inertia associated with changes in the
buffer size. The optimization metric to learn this parameter was Poor-Audio-Rating, an objective
metric estimating speech quality based on packet loss, jitter, and conversational delay derived from
user ratings [6].

Scenario: Video Encoding Bitrate Allocation for Screen Share Screen sharing sessions in VoIP
require careful selection of the bitrate. Large bit rates lead to a higher image quality, but are also
susceptible to frame freezes due to packet losses under poor network conditions. This quality-
distortion tradeoff is characterized by a constant that weights transmission rates and frame freezes.
Similar to audio, we optimized for a video technical metric termed Poor-Video-Rating.

Experiments and Results: A summary of the experimental data for all three scenarios is presented
in Table 1. The baseline (control group) for these experiments is the metric value obtained when
using the ‘one-size-fit-all’ constant value. The metric improvement represents the relative gain ob-
served when replacing the constant with a context-aware model (treatment group). The data is
collected using an ε-greedy policy. The ε was set to 0.2 for the experiments. For each experiment,
we report the number of unique contexts to convey the range of inputs going into the FeatureBroker.
Each of these experiments showed statistically significant improvements with a p-value less than
0.01. We note the following:

• These experiments show that we could successfully replace constants with CB models for RTC
scenarios. Since these experiments were done in three different components by three different
teams, it demonstrates the generality of the FeatureBroker solution.

• New experiments were able to build and re-use the on-boarding of features done by previous ex-
periments. For example, the on-boarding of features for ScreenShareEncoding experiment sim-
plified the integration of the NetworkReconnect model as the two models shared features. Prior to
the introduction of FeatureBroker, engineering teams would have to coordinate and align on API
changes to expose features. This process would often take multiple days, and has been reduced
by an order of magnitude.

• Due to the limited memory and CPU budget in RTC applications, we focused on keeping the
footprint of CB models small. The main reason was to scale this methodology so that it can be
applied to 100s of scenarios within Skype.

4 Discussion
This paper introduces Resonance, a system for replacing application constants with context-aware
models. We built and deployed this system for the real-time production scenarios of Skype. We
presented FeatureBroker, a library for integrating ML models relying on global context. The li-
brary presents a solution to the problem of inference when the context is distributed across strong
component boundaries. We make this library available to practitioners to bring down the adop-
tion and development costs. Using three statistically significant real-world experiments, we showed

4

this methodology can improve system performance. Such a methodology provides a new tool for
component owners to optimize their components.

Future Work: The problem of efficient discovery of sensitive constants in a live system containing
thousands of constants remains challenging.

In conclusion, we emphasize that the ideas presented in Resonance and challenges solved by Fea-
tureBroker are applicable to many software systems, particularly large codebases that ship with
1000s of system constants.

References
[1] A. Agarwal, S. Bird, M. Cozowicz, L. Hoang, J. Langford, S. Lee, J. Li, D. Melamed, G. Oshri, O. Ribas,

et al. A multiworld testing decision service. arXiv preprint arXiv:1606.03966, 7, 2016.

[2] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter opti-
mization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2623–2631. ACM, 2019.

[3] E. Bakshy. Towards simplicity in machine learning for live systems with adaptive experimentation. http
s://slideslive.com/38922475/towards-simplicity-in-machine-learning-for-live-sy
stems-with-adaptive-experimentation, 2019.

[4] E. Bakshy, L. Dworkin, B. Karrer, K. Kashin, B. Letham, A. Murthy, and S. Singh. Ae: A domain-
agnostic platform for adaptive experimentation. In Systems for ML at NeurIPS, 2018.

[5] V. Carbune, T. Coppey, A. Daryin, T. Deselaers, N. Sarda, and J. Yagnik. Smartchoices: Hybridizing
programming and machine learning. In Reinforcement Learning for Real Life (RL4RealLife) Workshop in
the 36th International Conference on Machine Learning (ICML),, 2019.

[6] L. Ding and R. A. Goubran. Speech quality prediction in voip using the extended e-model. In GLOBE-
COM’03. IEEE Global Telecommunications Conference (IEEE Cat. No. 03CH37489), volume 7, pages
3974–3978. IEEE, 2003.

[7] G. Dulac-Arnold, D. Mankowitz, and T. Hester. Challenges of real-world reinforcement learning. arXiv
preprint arXiv:1904.12901, 2019.

[8] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. Journal of Machine Learning
Research, 20(55):1–21, 2019.

[9] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley. Google vizier: A service
for black-box optimization. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1487–1495. ACM, 2017.

[10] H. Jin, Q. Song, and X. Hu. Auto-keras: An efficient neural architecture search system. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
1946–1956. ACM, 2019.

[11] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and I. Stoica. Learning to optimize join queries with
deep reinforcement learning. arXiv preprint arXiv:1808.03196, 2018.

[12] J. Langford, L. Li, and A. Strehl. Vowpal wabbit online learning project. https://github.com/Vowpa
lWabbit/vowpal wabbit/wiki, 2007.

[13] J. Lerman. Programming Entity Framework: Building Data Centric Apps with the ADO. NET Entity
Framework. ” O’Reilly Media, Inc.”, 2010.

[14] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource management with deep reinforcement
learning. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks, pages 50–56, 2016.

[15] Microsoft. Feature broker, a library for enabling sharing of context/features across code components for
ml inference. https://github.com/microsoft/FeatureBroker.

[16] ONNX Runtime: cross-platform, high performance scoring engine for ML models. https://github.c
om/microsoft/onnxruntime, 2019.

[17] S. Paul, V. Kurin, and S. Whiteson. Fast efficient hyperparameter tuning for policy gradient methods. In
Advances in Neural Information Processing Systems, pages 4616–4626, 2019.

[18] V. Perrone, H. Shen, M. W. Seeger, C. Archambeau, and R. Jenatton. Learning search spaces for bayesian
optimization: Another view of hyperparameter transfer learning. In Advances in Neural Information
Processing Systems, pages 12771–12781, 2019.

5

https://slideslive.com/38922475/towards-simplicity-in-machine-learning-for-live-systems-with-adaptive-experimentation
https://slideslive.com/38922475/towards-simplicity-in-machine-learning-for-live-systems-with-adaptive-experimentation
https://slideslive.com/38922475/towards-simplicity-in-machine-learning-for-live-systems-with-adaptive-experimentation
https://github.com/VowpalWabbit/vowpal_wabbit/wiki
https://github.com/VowpalWabbit/vowpal_wabbit/wiki
https://github.com/microsoft/FeatureBroker
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime

	Introduction
	Resonance
	Experimental Results
	Discussion

