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Abstract

Deep neural networks (DNNs) are state-of-the-art models adopted in many machine
learning based systems and algorithms. However, a notable issue of DNNs is their
considerable energy consumption for training and inference. At the hardware level,
one current energy-saving solution at the inference phase is to reduce the voltage
supplied to the DNN hardware accelerator. However, operating in the low-voltage
regime would induce random bit errors saved in the memory and thereby degrade
the model performance. To address this challenge, we propose NeuralFuse, a
novel input transformation technique as an add-on module, to protect the model
from severe accuracy drops in low-voltage regimes. With NeuralFuse, we can
mitigate the tradeoff between energy and accuracy without retraining the model,
and it can be readily applied to DNNs with limited access, such as DNNs on
non-configurable hardware or remote access to cloud-based APIs. Compared with
unprotected DNNs, our experimental results show that NeuralFuse can reduce
memory access energy up to 24% and simultaneously improve the accuracy in
low-voltage regimes up to an increase of 57%. To the best of our knowledge,
this is the first model-agnostic approach (i.e., no model retraining) to mitigate the
accuracy-energy tradeoff in low-voltage regimes.

1 Introduction

Energy-efficient computing is a primary consideration for the deployment of Deep Neural Networks
(DNNs), particularly on edge devices and on-chip AI systems. Increasing energy efficiency and
lowering the carbon footprint of DNN computation involves iterative efforts from both chip designers
and algorithm developers. Processors with specialized hardware accelerators for AI computing are
now ubiquitous, capable of providing orders of magnitude more performance and energy efficiency
for AI computation. In addition to reduced precision/quantization and architectural optimizations,
low voltage operation is a powerful knob that impacts power consumption. There is ample evidence
in computer engineering literature that study the effects of undervolting and low-voltage operation on
accelerator memories that store weights and activations during computation. Aggressively scaling
down the SRAM (Static Random Access Memory) supply voltage below the rated value leads to
an exponential increase in bit failures, but saves power on account of the quadratic dependence of
dynamic power on voltage. Such memory bit flips in the stored weight and activation values can
cause catastrophic accuracy loss. A recent spate of works advocates low voltage operation of DNN
accelerators using numerous techniques to preserve accuracy ranging from hardware-based error
mitigation techniques [1, 2] to error-aware robust training of DNN models [3–5]. On-chip error
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Figure 1: Pipeline of our proposed NeuralFuse framework. Given a data sample x, NerualFuse
transforms the input and then passes it to the access-limited DNN. Clean/Perturbed accuracy means
the model is operating in regular/low-voltage mode. The latter mode incurs random bit errors
(perturbations) to the deployed DNN model.

mitigation methods have significant performance and power overheads. The learning algorithms in
[3–5] generate models which are more robust against bit errors, eliminating the need for on-chip error
mitigation. However, error-aware training to find the optimal set of robust parameters for each model
is time and energy-intensive, and may not be possible at all in access-limited settings.

In this paper, we propose a novel model-agnostic approach: NeuralFuse. NeuralFuse allows for
mitigating bit errors caused by very low voltage operation, through a trainable input transformation
parameterized by a relatively small DNN, to enhance the robustness of the original input and provide
accurate inference. The pipeline of NeuralFuse is illustrated in Figure 1. NeuralFuse accepts the
scenarios under access-limited neural networks (e.g., non-configurable hardware or remote access to
cloud-based APIs) to protect the deployed models from making wrong predictions under low power.
Specifically, we consider two settings: (a) Relaxed Access: the model details are unknown (e.g.,
packed as APIs) but backpropagating through the black-box models is possible. In this regard, we
train NeuralFuse via backpropagation, also called the gradient-based method. (b) Restricted Access:
models are unknown and backpropagation is disallowed. Therefore, we can only query the models to
get the outputs. In this case, we consider training NeuralFuse on a white-box surrogate model and
transferring it to the restricted access models. To the best of our knowledge, this is the first study to
address random bit errors for improving accuracy in low-voltage and access-limited settings.

Our main contributions are as follows:

• We propose NeuralFuse, a novel input transformation framework to enhance the accuracy of
DNNs subject to random bit errors caused by undervolting. NeuralFuse is model-agnostic
because it is an add-on module and it does not require re-training the deployed DNN model.

• We consider two practical access-limited scenarios: Relaxed Access and Restricted Access.
In the former setting, we use gradient-based methods to train the NeuralFuse module. In the
latter setting, we use a white-box surrogate model to train NeuralFuse and show its high
transferability to other types of DNN architectures.

• We conduct extensive experiments on various combinations of DNN models (ResNet18,
ResNet50, VGG11, VGG16, and VGG19), datasets (CIFAR-10, CIFAR-100, and GTSRB),
and NeuralFuse implementations with different architectures and sizes (ConvL, ConvS,
DeConvL, DeConvS, UNetL, and UNetS). The results show that NeuralFuse can consistently
increase the perturbed accuracy (accuracy under random bit errors in weights) by up to 57%
while simultaneously save the overall SRAM memory access energy by up to 24% based on
the realistic characterization of bit cell failures for a given memory array in a low-voltage
regime inducing 1% of bit error rate.

2 NeuralFuse: Methodology and Algorithms

2.1 Error-Resistant Input Transformation

As illustrated in Figure 1, to overcome the drawback of performance degradation in low-voltage
settings for access-limited DNNs, we propose a novel trainable input transformation function
parametrized by a relatively small DNN, called NeuralFuse, to mitigate the trade-off in accuracy and
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energy for model inference. The rationale is to use a designed loss function and training algorithm to
train NeuralFuse, and then apply NeuralFuse to the input data such that the transformed inputs will
become robust against random bit errors induced by undervolting.

Consider an input data sample x sampled from the data distribution X and a model Mp with random
bit errors on its weights (which is called a perturbed model). When there are no bit errors (i.e., the
normal-voltage settings), the perturbed model reduces a nominal deterministic model denoted by
M0. NeuralFuse aims to ensure the perturbed model Mp can make correct results on the transformed
inputs as well as retain consistent results of M0 in regular (normal-voltage) settings.

To adapt to different data characteristics, the input transformation function is designed to be input-
aware, which is formally defined as:

F(x) = x+ G(x)

where G(x) is a “generator” (i.e., an input transformation function) that can generate a perturbation
based on the input x. The transformed inputs F(x) by NeuralFuse will be taken as the input to a
deployed model (either M0 or Mp) for final inference. Without loss of generality, we assume the
transformed input lies within a scaled input range F(·) ∈ [−1, 1]d, where d is the dimension of x.

2.2 Training Objective and Optimizer

To train the generator G(·), which should ensure the correctness of both the perturbed model Mp and
the clean model M0, we design the following training objective function:

argmax
WG

logPM0
(y|F(x;WG)) + λ ·EMp∼Mp

[logPMp
(y|F(x;WG))]

subject to F(·) ∈ [−1, 1]d, where WG is the set of trainable parameters for G, y is the ground-truth
label of x, PM denotes the likelihood of y computed by a model M given a transformed input
F(x;WG), Mp is the distribution of the perturbed models inherited from the clean model M0 under
p% of random bit error rate, and λ is the hyperparameter that we can tune to balance the importance
between the clean model and the perturbed model.

The training objective function can be readily converted to a loss function (loss) that evaluates the
cross-entropy between the groundtruth label y and the prediction PM (y|F(x;WG). The total loss
function becomes

LossTotal = lossM0
+ λ · lossMp

. (1)

To optimize the loss function entailing the evaluation of the loss term lossMp
on randomly per-

turbed models, our training process is inspired by the Expectation Over Transformation Attacks
(EOT attacks) [6]. EOT attacks aim to find a robust adversarial example against multiple image
transformations. Based on the idea, we propose a new optimizer for solving (1), which we call
Expectation Over Perturbed Models (EOPM). EOPM-trained generators can generate error-resistant
input transformations and help mitigate the inherent bit errors. However, it is impossible to enumerate
all possible perturbed models with random bit errors, and the number of realizations for perturbed
models is limited by the memory constraint of GPUs used for training. In practice, we only take N
perturbed models for each iteration to calculate the empirical average loss. That is:

LossN =
lossMp1

+ ...+ lossMpN

N
,

where N is the number of simulated perturbed models {Mp1 , . . . ,MpN
} under random bit errors

to calculate the loss. Based on the empirical loss, we can calculate the gradients for updating the
generator as:

∂LossTotal

∂WG
=

∂lossM0

∂WG
+

λ

N
·
(
∂lossMp1

∂WG
+ ...+

∂lossMpN

∂WG

)
.

In our implementation, we find that using N = 10 can already deliver stable performance, and there
is little gain in using a larger value. Please refer to Appendix F for details.
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3 Experiments

In this section, we reveal our experimental results trained by the EOPM algorithm for NeuralFuse
under two scenarios (relaxed/restricted access). The details of the experimental settings are appeared
in Appendix C. In addition, we also provide the visualization results and further analysis to better
understand the properties of NeuralFuse in Appendix E and F, respectively.

3.1 Performance Evaluation on Relaxed Access

The experimental results of the Relaxed Access setting are shown in Table 1. We train and test
NeuralFuse with ResNet18, ResNet50, VGG11, VGG16, and VGG19 as based models under the 1%
bit error rate. For each experiment, we sample N = 10 perturbed models for evaluation and report
the mean accuracy and standard deviation of the test accuracy, which are not used in the training
process.

Table 1: Testing accuracy (%) under 1% of random bit error rate. Notations: B.M. (based model),
C.A. (clean accuracy), P.A. (perturbed accuracy), N.F. (NeuralFuse), and IP (total improvement of
P.A.+N.F. v.s. P.A.).

B.M. N.F. CIFAR-10 GTSRB CIFAR-100
C.A. P.A. C.A.+N.F. P.A.+N.F. IP C.A. P.A. C.A.+N.F. P.A.+N.F. IP C.A. P.A. C.A.+N.F. P.A.+N.F. IP

ResNet18

ConvL

92.6

89.8 87.8 ± 1.7 48.8

95.5

95.7 91.1 ± 4.7 54.2

73.7

54.8 11.0 ± 7.7 6.4
ConvS 88.2 59.5 ± 11 20.6 94.4 68.6 ± 12 31.7 49.7 4.2 ± 2.2 -0.4

DeConvL 38.9 89.6 88.5 ± 0.8 49.6 36.9 95.6 91.3 ± 4.3 54.4 4.6 55.2 11.9 ± 8.2 7.3
DeConvS ± 12.4 82.9 68.8 ± 6.4 29.9 ± 16.0 95.7 78.1 ± 9.1 41.2 ± 2.9 32.7 4.0 ± 2.2 -0.6

UNetL 86.6 84.6 ± 0.8 45.6 96.2 93.8 ± 1.0 56.9 50.6 14.5 ± 8.9 10.0
UNetS 84.4 68.8 ± 6.0 29.8 95.9 85.1 ± 6.9 48.2 26.8 4.6 ± 2.5 -0.0

ResNet50

ConvL

92.6

85.5 53.2 ± 22 27.1

95.0

95.6 71.6 ± 20 42.1

73.5

63.5 3.2 ± 1.7 0.1
ConvS 85.2 34.6 ± 14 8.5 94.8 50.5 ± 22 21.0 65.5 3.2 ± 1.6 0.1

DeConvL 26.1 87.4 63.3 ± 21 37.2 29.5 94.9 71.6 ± 21 42.0 3.0 59.6 3.2 ± 1.7 0.2
DeConvS ± 9.4 82.4 42.2 ± 17 16.1 ± 16.9 93.0 56.4 ± 17 26.9 ± 1.8 61.1 3.2 ± 1.7 0.1

UNetL 86.2 75.5 ± 12 49.4 94.5 80.6 ± 15 51.1 39.0 5.0 ± 1.7 1.9
UNetS 77.3 56.2 ± 19 30.1 94.7 64.7 ± 22 35.2 47.7 3.4 ± 1.8 0.3

VGG11

ConvL

88.4

89.6 87.2 ± 2.9 45.1

91.9

94.8 85.7 ± 7.2 50.9

64.8

58.3 19.7 ± 11 11.5
ConvS 84.9 66.3 ± 7.5 24.1 91.1 62.2 ± 11 27.3 56.6 10.4 ± 7.4 2.2

DeConvL 42.2 89.3 87.2 ± 2.6 45.0 34.9 95.0 84.6 ± 7.6 49.7 8.2 82.3 21.2 ± 11 13.0
DeConvS ± 11.6 85.6 68.2 ± 7.1 26.0 ± 12.4 92.4 67.5 ± 11 32.6 ± 5.7 58.3 11.8 ± 7.9 3.5

UNetL 87.1 83.6 ± 1.3 41.4 92.2 83.2 ± 6.0 48.3 51.1 22.1 ± 8.2 13.9
UNetS 85.5 72.7 ± 4.6 30.5 94.7 73.4 ± 10 38.5 51.9 13.1 ± 7.9 4.9

VGG16

ConvL

90.3

90.1 86.0 ± 6.2 50.3

95.2

96.3 72.4 ± 12 57.3

67.8

51.4 19.2 ± 6.0 12.6
ConvS 87.4 59.6 ± 12 23.9 94.1 39.8 ± 13 24.6 44.3 6.7 ± 2.3 0.1

DeConvL 35.7 89.7 85.5 ± 6.8 49.8 15.1 96.4 72.0 ± 12 56.9 7.0 53.1 20.8 ± 6.2 14.2
DeConvS ± 7.9 86.8 66.5 ± 11 30.8 ± 6.8 93.8 50.9 ± 13 35.8 ± 3.5 23.5 4.8 ± 1.7 -1.8

UNetL 87.4 83.4 ± 4.4 47.7 95.8 78.6 ± 11 63.5 50.2 25.3 ± 1.7 18.7
UNetS 87.4 71.2 ± 8.2 35.5 94.3 63.3 ± 14 48.1 27.7 9.9 ± 2.1 3.3

VGG19

ConvL

90.5

89.8 77.7 ± 19 41.7

95.5

96.0 88.3 ± 7.2 51.7

67.8

59.4 29.2 ± 8.1 18.6
ConvS 87.3 52.7 ± 17 16.7 93.8 69.0 ± 14 32.4 63.7 14.4 ± 5.1 3.8

DeConvL 36.0 86.3 78.4 ± 18 42.4 36.6 95.4 87.2 ± 7.5 50.6 10.6 60.1 29.6 ± 8.5 19.0
DeConvS ± 12 86.5 58.2 ± 18 22.2 ± 6.8 94.5 73.1 ± 12 36.5 ± 4.3 60.9 16.1 ± 6.0 5.6

UNetL 86.3 82.1 ± 4.8 46.0 95.4 88.2 ± 6.7 51.7 58.7 30.2 ± 8.2 19.6
UNetS 86.3 66.4 ± 13 30.4 94.6 80.6 ± 9.0 44.1 59.1 18.0 ± 6.2 7.4

For CIFAR-10 and GTSRB, we observe that large generators like ConvL and UNetL can significantly
improve the perturbed accuracy in the range of 41% to 63% on ResNet18, VGG11, VGG16, and
VGG19. For ResNet50, the improvement is slightly worse than other base models, but it can attain up
to 51% improvement on GTSRB. On the other hand, the improvements based on small generators like
DeConvS are worse than larger generators. This can be explained by the better ability to learn error-
resistant generators for larger-sized networks (though they may consume more energy). Moreover,
for CIFAR-100, we can find that for both large and small generators, the gains are less compared
to the other two datasets. We believe this is because CIFAR-100 is a more difficult dataset (more
classes) for the generators to learn to protect the base models.

3.2 Transferability for Restricted Access

To test the performance of the Restricted Access scenario, we train NeuralFuse on a white-box
surrogate model and transfer it to other black-box base models. The experimental results are shown
in Table 2. We adopt ResNet18 and VGG19 as the white-box surrogate (source) models for training
the generators under 1.5% of bit error rate (B.E.R.). For the generators, we choose ConvL and UNetL
because they have outstanding performance in Table 1.

In Table 2, we can find that transferring from a larger B.E.R. (1.5%) can give strong resilience to a
smaller B.E.R. (1% or 0.5%). We also find that using VGG19 as a surrogate model with UNet-Based
generators like UNetL can give better improvements than other combinations. On the other hand,
in some cases, we observe that if we transfer between the same source and target models (but with
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Table 2: Transferred results trained by 1.5% of random bit error rate on CIFAR-10. Notations: S.M.
(source model, used for training generators), T.M. (target model, used for testing generators), B.E.R
(the bit error rate of the target model), C.A. (clean accuracy, %), P.A. (perturbed accuracy, %), N.F.
(NeuralFuse), and IP (total improvement of P.A.+N.F. v.s. P.A.).

S.M. T.M. B.E.R. ConvL UNetL
C.A.+N.F. P.A.+N.F. IP C.A.+N.F. P.A.+N.F. IP

ResNet18

ResNet18 1% 89.8 89.0 ± 0.5 50.1 85.8 85.2 ± 0.5 46.3
0.5% 89.6 ± 0.2 19.6 85.7 ± 0.2 15.6

ResNet50 1% 89.2 36.1 ± 18 10.0 84.4 38.9 ± 16 12.8
0.5% 74.1 ± 10 13.1 72.7 ± 4.6 11.7

VGG11 1% 86.3 59.2 ± 10 17.0 82.3 69.8 ± 7.5 27.6
0.5% 78.9 ± 4.9 15.2 77.0 ± 4.0 13.4

VGG16 1% 89.4 62.2 ± 18 26.5 84.7 68.9 ± 14 33.1
0.5% 83.4 ± 5.5 16.8 80.5 ± 5.9 13.9

VGG19 1% 89.8 49.9 ± 23 13.9 85.0 55.1 ± 17 19.1
0.5% 81.8 ± 8.5 17.6 78.5 ± 6.8 14.3

VGG19

ResNet18 1% 88.9 62.6 ± 13 23.7 85.0 72.3 ± 11 33.3
0.5% 84.2 ± 7.2 14.1 82.1 ± 2.2 12.0

ResNet50 1% 88.8 37.9 ± 18 11.8 85.2 46.7 ± 17 20.5
0.5% 76.6 ± 7.8 15.6 78.3 ± 3.7 17.3

VGG11 1% 88.9 76.0 ± 6.1 33.9 85.5 81.9 ± 3.9 39.7
0.5% 85.9 ± 2.6 22.3 84.8 ± 0.5 21.2

VGG16 1% 89.0 76.5 ± 9.0 40.8 85.9 79.2 ± 7.5 43.5
0.5% 87.7 ± 0.7 21.1 84.7 ± 0.9 18.1

VGG19 1% 89.1 80.2 ± 12 44.2 86.3 84.3 ± 1.2 48.3
0.5% 88.8 ± 0.4 24.6 85.9 ± 0.3 21.7

different B.E.R for training and testing), the performance may outperform the original relaxed-access
results. For example, when transferring VGG19 with UNetL under 1.5% B.E.R. to VGG19 or VGG11
under 0.5% B.E.R., the results would be 85.9% compared to 85.0% for VGG19 (original), and 84.8%
compared to 82.4% for VGG11 (original), respectively. We conjecture that the generators trained
on a larger B.E.R. can actually cover the error patterns of a smaller B.E.R., and even help improve
generalization under a smaller B.E.R. Consequently, these findings show great promise for improving
the accuracy of access-limited-based models in low-voltage settings.

4 Conclusion

In this paper, we proposed NeuralFuse, the first non-intrusive post-hoc protection module for model
inference against bit errors induced by low voltage. NeuralFuse is particularly suited to practical
machine deployment settings involving relaxed or limited access to the base model. The design
of NeuralFuse includes a novel loss function and a new optimizer EOPM for handling simulated
randomness in perturbed models. Our comprehensive experimental results and analysis show that
NeuralFuse can greatly improve the test accuracy (up to 57% increase) while simultaneously enjoying
up to 24% reduction in memory access energy). NeuralFuse also demonstrates high transferability to
access-restricted models. NeuralFuse provides significant improvements in mitigating the energy-
accuracy tradeoff of neural network inference in low-voltage regimes and sheds new insights on green
AI technology.
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Appendix

A Related Work and Background

A.1 Software Based Energy Saving Strategies

Recent studies have proposed reducing energy consumption from a software perspective. For instance,
the quantization techniques reduce the precision of storing the model weights and therefore reduce the
total memory storage [7–9]. [10] proposes Energy-Aware pruning on each layer and then finetuned
the weights to maximize the final accuracy. [11] proposes ECC, a DNN compression framework, that
compresses a DNN model to meet the given energy constraint, and [12] serves the energy constraint
as the optimization problem during DNN training to reduce the energy consumption and maximize the
training accuracy. [13] considers joint pruning and quantization of the DNN models for compression.
However, these methods focus on changing either the model architectures or model weights to reduce
the energy consumption, which are orthogonal to our NeuralFuse that serves as an add-on module at
the data input to any given model.

A.2 Hardware Based Energy Saving Strategies

Existing works have studied improving energy efficiency by designing specific hardware. Several
works study undervolting of the DNN accelerators and propose methods to preserve accuracy with
bit errors. Minerva [1] proposes an SRAM fault mitigation technique that rounds the faulty weights
into zeros to avoid the degradation of the prediction accuracy. [14] proposes to store the sensitive
MSBs in robust SRAM cells to preserve accuracy. [2] proposes dynamic supply voltage boosting
to a higher voltage to improve the resilience of the memory access operation. [3] considers a
learning-based method that tries to find robust models against the bit errors. The paper discusses
several techniques to improve the robustness, such as different quantization methods, weight clipping,
random bit error training, and adversarial bit error training. The authors observe that the combination
of quantization, weight clipping, and adversarial bit error training achieves excellent performance in
their experiments. However, the authors have mentioned that the training process they proposed is
very sensitive to the settings of hyperparameters and hence it might be difficult to train. We argue that
the methods mentioned above are not easy to implement or not suitable for real-world scenarios in
access-limited settings. For example, the weights of DNN models packed on embedded systems may
not be configurable or updatable. Therefore, model retraining such as in [3] is not a viable option.
Moreover, model training of DNNs is already a tedious and time-consuming task. Adding error-aware
training during training may further increase the training complexity and introduce challenges in
hyperparameter search as identified in [3]. Our proposed NeuralFuse spares the need for model
retraining by attaching a trainable input transformation function parameterized by a relatively small
DNN as an add-on module to any DNN model as is.

A.3 Memory bit errors

Low-voltage-induced memory bit cell failures cause bit flips from 0 to 1 and vice-versa. As supply
voltage is scaled down below Vmin, the minimum rated voltage at which no bit flips are guaranteed
to occur, SRAM memory bit errors exponentially increase. This phenomenon is well-studied in
literature [2, 15]. Figure 2 illustrates the increase in bit errors when voltage is scaled down for an
SRAM array of size 512x64 bits and 14nm technology node. The corresponding dynamic energy per
reading access of the SRAM is shown in the figure on the right, where energy is measured for each
voltage at a constant frequency. In both cases, the supply voltages are normalized to Vmin, the lowest
voltage at which there are no measured bit errors for this SRAM. For example, compared to Vmin,
accessing the SRAM at 0.83Vmin leads to a 1% bit error rate. However, dynamic energy per access is
reduced by approximately 30%. Accelerator memories store DNN weights, and bit errors, particularly
at most significant bits, can lead to unacceptable losses in test accuracy. However, improving the
robustness to bit errors allows us to lower the voltage and exploit the energy savings that come with
it. Such bit cell failures for a given memory array are randomly distributed and independent of each
other. The spatial distribution of bit errors is usually different across different arrays, even within
a chip as well as different chips, and can be assumed random. In this work, we simulate bit errors
in a memory array of a given size, similar to [2], by generating a random distribution of bit cell
failures, resulting in the equal likelihood of 0-to-1 and 1-to-0 bit flips. Weights are quantized to N=8

8



bit precision by symmetrically mapping to the range (−2N−1 − 1, 2N−1 − 1). Randomly distributed
bit errors are then injected in the quantized 2’s complement representation of weights to generate
perturbed models.

Figure 2: (left) Bit error rate (right) Dynamic energy per memory access versus voltage. x-axis shows
voltages normalized with respect to the lowest bit error-free voltage

B Training Algorithm for NeuralFuse

Algorithm 1 summarizes our training steps for NeuralFuse. We split the training data X into B
mini-batches for training the generator in each epoch. For each mini-batch, we first feed these data
into F(·) to get the transformed inputs. Also, we simulate N perturbed models using p% random
bit error rate, denoted by Mp1

, ...,MpN
, from Mp. Then, the transformed inputs are fed into these

N perturbed models and the clean model M0 to calculate their losses and gradients. Finally, the
NeuralFuse parameters WG are updated based on the gradient obtained by EOPM.

Algorithm 1 Training steps for NeuralFuse
Input: Based model M0; Generator G; Training data samples X ; Distribution of the perturbed
models Mp; Number of perturbed models N ; Total training iterations T
Output: Optimized parameters WG for the Generator G

1: for t = 0, ..., T − 1 do
2: for all mini-batches {x, y}Bb=1 ∼ X do
3: Create transformed inputs xt = F(x) = x+ G(x).
4: Sample N perturbed models {Mp1

, ...,MpN
} from Mp under p% random bit error rate.

5: for all Mpi ∼ {Mp1
, ...,MpN

} do
6: Calculate the loss losspi based on the output of the perturbed model Mpi. Then calculate

the gradients gpi for WG based on losspi.
7: end for
8: Calculate the loss loss0 based on the output of the clean model M0. Then calculate the

gradients g0 for WG based on loss0.
9: Calculate the mean gradients gmean based on g0 and gp1...gpN .

10: Update WG by using gmean defined in Equation (1).
11: end for
12: end for

C Experiment Setups

Datasets: We evaluate NeuralFuse on three different datasets: CIFAR-10 [16], CIFAR-100 [16], and
GTSRB [17]. CIFAR-10 consists of 60000 32*32*3 images. There are 10 classes for CIFAR-10
with 50000 images for training and another 10000 for testing. CIFAR-100 is a dataset similar to
CIFAR-10, but it has 100 classes. It contains 60000 32*32*3 images. For each class, there have 500
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images for training and 100 for testing. GTSRB (German Traffic Sign Recognition Benchmark) is a
dataset that contains 43 classes with 39209 images for training, and 12630 images for testing. We
resize GTSRB into 32*32*3 in our experiments.

Base Model Details: We choose several common architectures for our base models, such as VGG11,
VGG16, VGG19 [18], ResNet18, and ResNet50 [19]. In order to satisfy the settings for deploying
the models on chips, all of our models are trained by using quantization-aware training on weights.
Therefore, we did not adopt the pre-trained models in our experiments.

Details for Generator: The architectures of the generators for NeuralFuse are based on the Encoder-
Decoder structure. We design and compare three types of generators, namely Convolution-Based,
Deconvolution-Based, and UNet-Based. For each type, we also consider large/small network sizes.
Both Convolution-Based and Deconvolution-Based will follow similar architecture for ease of
comparison. We train the generators based on EOPM under quantization-aware training. More details
are given in Appendix D.

• Convolution-Based: We use Convolution with MaxPool layers to create the encoder, and
Convolution with UpSample layers for the decoder. The architecture is inspired by [20].

• Deconvolution-Based: We use Convolution with MaxPool layers to create the encoder, and
Deconvolution layers for the decoder.

• UNet-Based: UNet [21] has outperformed performance on several image segmentation
tasks.
We use Convolution with MaxPool layers to create the encoder, and Deconvolution layers
for the decoder.

Energy Consumption Calculation: Reported energy in Figure 1 is calculated as the product of
total number of SRAM memory accesses in a systolic-array-based CNN accelerator and the dynamic
energy per reading access at a given voltage. Our work focuses on resilience to low-voltage bit
errors in model weights, therefore, we report the reduction in overall weight memory energy. It
needs to be noted that reporting the overall DNN accelerator energy, including computation for a
specific hardware architecture, is not relevant to the scope of this work. The number of memory
accesses is obtained from SCALE-SIM simulator [22], and our chosen configuration simulates an
output-stationary dataflow and a 32x32 systolic array, with 256KB of weight memory. The dynamic
energy per reading access of the SRAM at Vmin, the bit error-free voltage, and Vber, the voltage
corresponding to 1% bit error rate (0.83Vmin), are obtained at the same clock frequency from Cadence
ADE Spectre simulations.

Relaxed and Restricted Access Settings: We consider two scenarios (relaxed/restricted access) in
our experiments. For relaxed access, the information of the base model is not entirely transparent,
but it allows obtaining gradients from the black-box model through backpropagation. Therefore,
this setting allows direct training of NeuralFuse with the base model using EOPM. On the other
hand, for restricted access, only the inference function is allowed for the base model. Therefore,
we train NeuralFuse by using a white-box surrogate model and then transfer the generator to the
access-restricted model.

Computing Resources and Training Process: For the base models, we take 100 epochs for training
both CIFAR-10 and GTSRB and 200 epochs for training CIFAR-100. For the generators trained by
EOPM, we take different epochs for each experiment until the generator converges.

For both base models and generators, we apply several data augmentation techniques to ensure
the accuracy is close to state-of-the-art. For instance, we take random crops, random horizontal
flip for all three datasets, and random affine only for GTSRB. All of the datasets would be
normalized to [−1, 1]d. Our experiments are conducted on Nvidia Tesla V100 GPUs with Pytorch for
implementation.

D Implementation Details for NeuralFuse Generator

The architecture of the generators is based on the Encoder-Decoder structure. In this paper, we
design three types of generators with large/small network sizes, namely Convolution-Based (ConvL,
ConvS), Deconvolution-Based (DeConvL, DeConvS), and Unet-Based (UNetL, UNetS) to evaluate
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the performance. ConvL is inspired by [20], and then we design three similar generators to ConvL,
such as ConvS, DeConvL, and DeConvS. The model architectures are shown in Table 3. Besides,
UNet-Based is different from other architectures; we follow the architecture in [21], then show the
architecture in Table 4. For the abbreviation used in the table, ConvBlock means the Convolution
block, Conv means a single Convolution layer, DeConvBlock means the Deconvolution block,
DeConv means a single Deconvolution layer, and BN means a Batch Normalization layer. We use
learning rate=0.001, batch size=256, lambda=5, and Adam optimizer.

Table 3: Model architecture for both Convolution-Based and Deconvolution-Based models. Each
ConvBlock consists of a Convolution (kernel=3x3, padding=1, stride=1), a Batch Normalization, and
a ReLU layer. Each DeConvBlock consists a Deconvolution (kernel=4x4, padding=1, stride=2), a
Batch Normalization, and a ReLU layer.

ConvL ConvS DeConvL DeConvS
Layers #Channels Layers #Channels Layers #Channels Layers #Channels

(ConvBlock)x2, MaxPool 32 ConvBlock, Maxpool 32 (ConvBlock)x2, MaxPool 32 ConvBlock, Maxpool 32
(ConvBlock)x2, MaxPool 64 ConvBlock, Maxpool 64 (ConvBlock)x2, MaxPool 64 ConvBlock, Maxpool 64
(ConvBlock)x2, MaxPool 128 ConvBlock, Maxpool 64 (ConvBlock)x2, MaxPool, 128 ConvBlock, Maxpool 64

ConvBlock, UpSample, ConvBlock 128 ConvBlock, UpSample 64 ConvBlock 128 DeConvBlock 64
ConvBlock, UpSample, ConvBlock 64 ConvBlock, UpSample 32 DeConvBlock, ConvBlock 64 DeConvBlock 32
ConvBlock, UpSample, ConvBlock 32 ConvBlock, UpSample 3 DeConvBlock, ConvBlock 32 DeConv, BN, Tanh 3

Conv, BN, Tanh 32 Conv, BN, Tanh 3 Conv, BN, Tanh 3

Table 4: Model architecture for UNet-Based models. Each ConvBlock consists of a Convolution
(kernel=3x3, padding=1, stride=1), a Batch Normalization, and a ReLU layer. Other layer like
deconvolution layer (kernel=2x2, padding=1, stride=2) is used in UNet-Based model. For the final
Convolution layer, the kernel size is set to 1.

UNetL UNetS
Layers #Channels Layers #Channels

L1: (ConvBlock)x2 16 L1: (ConvBlock)x2 8
L2: Maxpool, (ConvBlock)x2 32 L2: Maxpool, (ConvBlock)x2 16
L3: Maxpool, (ConvBlock)x2 64 L3: Maxpool, (ConvBlock)x2 32
L4: Maxpool, (ConvBlock)x2 128 L4: Maxpool, (ConvBlock)x2 64

L5: DeConv 64 L5: DeConv 32
L6: Concat[L3, L5] 128 L6: Concat[L3, L5] 64
L7: (ConvBlock)x2 64 L7: (ConvBlock)x2 32

L8: DeConv 32 L8: DeConv 16
L9: Concat[L2, L8] 64 L9: Concat[L2, L8] 32
L10: (ConvBlock)x2 32 L10: (ConvBlock)x2 16

L11: DeConv 16 L11: DeConv 8
L12: Concat[L1, L11] 32 L12: Concat[L1, L11] 16
L13: (ConvBlock)x2 16 L13: (ConvBlock)x2 8

L14: Conv 3 L14: Conv 3

E Visualization

To better understand how our proposed NeuralFuse works, we visualize the output distribution from
the final linear layer of the based models and project the results onto the 2D space using TSNE [23].
Figure 3 shows the output distribution from ResNet18 trained by CIFAR-10 under 1% of bit error
rate. We choose two generators that have similar architecture: ConvL and ConvS, for this experiment.
We can observe that: (a) The output distribution of the clean model without NeuralFuse can be
grouped into 10 classes denoted by different colors. (b) The output distribution of the perturbed
model under 1% of bit error rate without NeuralFuse shows mixed representations and therefore
degraded accuracy. (c) The output distribution of the clean model with ConvL shows that applying
NeuralFuse will not hurt the prediction of the clean model too much. (d) The output distribution of
the perturbed model with ConvL shows high separability (and therefore high perturbed accuracy)
as opposed to (b). (e)/(f) shows the output distribution of the clean/perturbed model with ConvS.
For both (e) and (f), we can see nosier clustering when compared to (c) and (d), which means the
degraded performance of ConvS compared to ConvL. The visualization validates that NeuralFuse can
help retain good data representations under random bit errors and that larger generators in NeuralFuse
have better performance than smaller ones.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: TSNE results for ResNet18 trained by CIFAR-10 under 1% of bit error rate. (a) Clean
model. (b) Perturbed model. (c) Clean model with ConvL. (d) Perturbed model with ConvL. (e)
Clean model with ConvS. (f) Perturbed model with ConvS
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F Additional Analysis

Efficiency Ratio: To provide a full performance characterization of NeuralFuse, we analyze the
relationship between the final improvement of each based model and generators of varying parameter
counts or MACs (Multiply–Accumulate Operations). The efficiency ratio is defined as the improve-
ment in perturbed accuracy divided by parameter counts or MACs.For fairness, we should only
compare the efficiency ratio between two similar sizes of generators. We provide the efficiency results
in Table 5 for ConvL and UNetL. We observe the UNet-Based generators have better efficiency than
Convolution-Based for both improvements per Million-Parameters (M.Param) and improvements per
100-Million-MACs(100-M.MACs).

Table 5: The efficiency ratio for CIFAR-10 with ConvL and UNetL. Notations: B.E.R. (bit error rate).

Model B.E.R.
ConvL UNetL

Improve. per Improve. per Improve. per Improve. per
M.Param. 100-M.MACs M.Param. 100-M.MACs

ResNet18 1% 67.481% 60.63% 94.478% 110.145%
0.5% 24.660% 22.157% 33.633% 39.21%

ResNet50 1% 37.448% 33.646% 102.297% 119.261%
0.5% 35.187% 31.615% 47.447% 55.315%

VGG11 1% 62.313% 55.986% 92.019% 107.278%
0.5% 32.277% 29% 39.94% 45.397%

VGG16 1% 69.556% 62.494% 98.8% 115.185%
0.5% 30.291% 27.216% 40.584% 47.315%

VGG19 1% 57.646% 51.794% 95.362% 111.176%
0.5% 33.026% 29.673% 43.054% 50.193%

Study for N in EOPM: Here, we study the effect of N used in EOPM. The results are shown in
Figure 4. We report the results for ConvL and ConvS on ResNet18 trained by CIFAR-10 under 1%
bit error rate. We can find that if we set larger N , the performance increases until saturation. On
the other hand, in the experimental results for ConvL, larger N empirically has a lower standard
deviation. This means larger N gives better stability but at the cost of increased training time. In
contrast, for the small generator ConvS, we can find that the standard deviation is still large even
trained by larger N . The reason can be that the ability of the representation learning of the small
generator is weaker than the large generator. Therefore, there exists a trade-off between the stability
of the performance of the generators and the total training time. In our implementation, choosing
N = 5 or 10 is a good balance.

(a) (b)

Figure 4: The experimental results on different sizes of N . (a) Using ConvL. (b) Using ConvS.
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G Implementation Details for SCALE-SIM

SCALE-SIM [22] is a systolic-array-based CNN simulator that can calculate the number of mem-
ory accesses and the total time in execution cycles by giving the specific model architecture and
accelerator architectural configuration as inputs. In this paper, we use SCALE-SIM to calculate the
weights memory access of 5 based models (ResNet18, ResNet50, VGG11, VGG16, VGG19), and
6 generators (ConvL, ConvS, DeConvL, DeConvS, UNetL, UNetS). While SCALE-SIM supports
both Convolutional and Linear layers, it does not yet support Deconvolution layers. Instead, we try
to approximate the memory costs of Deconvolution layers by Convolution layers. We change the
input and output from Deconvolution into output and input of Convolution layers. Besides, we also
change the stride into 1 when we approximate it. We also add padding for the convolution layers
while generating input files for SCALE-SIM. In this paper, we only consider the energy saving on
weights accesses, so we only take the value "SRAM Filter Reads" from the output of SCALE-SIM as
the total weights memory accesses for further energy calculation.

H Energy-Accuracy Tradeoff with 1% Random Bit Error Rate

As mentioned in [3], the total dynamic energy consumption can be calculated by using the total
number of SRAM accesses times the dynamic energy of single SRAM access. Therefore, in Table 6,
we first report the total weight memory access calculated by SCALE-SIM. We note the total weights
memory access as T.W.M.A. In Table 7, we report the energy saving percentage of each combination
of the based models and generators at a voltage corresponding to 1% of the random bit error rate.
The formula of the energy saving percentage can be defined as:

Energy Saving (%) =
Original Energy −

(
Energylow-voltage-regime + EnergyNeuralFuse

)
Original Energy

× 100% (2)

Table 6: The total weights memory access calculated by SCALE-SIM. Notations: T.W.M.A. (total
weight memory access)

Model T.W.M.A.
ResNet18 2755968
ResNet50 6182144
VGG11 1334656
VGG16 2366848
VGG19 3104128
ConvL 320256
ConvS 41508

DeConvL 259264
DeConvS 86208

UNetL 180894
UNetS 45711

Table 7: The energy saving percentage for different combination of base models and NeuralFuse.

Model Energy Saving Percentage
ConvL ConvS DeConvL DeConvS UNetL UNetS

ResNet18 18.98% 29.09% 21.19% 27.47% 24.04% 28.94%
ResNet50 25.42% 29.93% 26.41% 29.21% 27.67% 29.86%
VGG11 6.6% 27.49% 11.17% 24.14% 17.05% 27.18%
VGG16 17.07% 28.85% 19.65% 26.96% 22.96% 28.67%
VGG19 20.28% 29.26% 22.25% 27.82% 24.77% 29.13%

We especially visualize the energy-accuracy tradeoff with 1% bit error rate for ResNet-18 (CIFAR-10)
in Figure 5. The full result is shown in Figure 6.
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Comparsion under 1% of bit error rate on CIFAR-10

Architecture
ResNet18 (Base)
ResNet18+ConvL
ResNet18+UNetL
ResNet18+ConvS
ResNet18+DeConvL
ResNet18+DeConvS
ResNet18+UNetS
MACs Ratio
11% 15%
6% 10%
0% 5%

Architecture
ResNet18 (Base)
ResNet18+ConvL
ResNet18+UNetL
ResNet18+ConvS
ResNet18+DeConvL
ResNet18+DeConvS
ResNet18+UNetS
MACs Ratio
11% 15%
6% 10%
0% 5%

Acc. 48.8%⬆
Sav. 18.9%⬆

Acc. 49.6%⬆
Sav. 21.1%⬆

Acc. 45.6%⬆
Sav. 24.0%⬆

Acc. 29.9%⬆
Sav. 27.4%⬆

Acc. 29.8%⬆
Sav. 28.9%⬆

Acc. 20.6%⬆
Sav. 29.1%⬆

Figure 5: The energy-accuracy tradeoff with 1% bit error rate for ResNet-18 (CIFAR-10) and different
NeuralFuse implementations. Bit errors are injected into model weights. The X-axis shows the
percentage reduction in dynamic memory access energy for NeuralFuse implementations in a low
voltage setting with 1% bit error rate, compared to the lowest bit error-free voltage. The Y-axis shows
the perturbed model accuracy with 1% bit error rate. The circle marker area reflects the relative size
of NeuralFuse to the base model.

Figure 6: The trend between MACs rate and transformed accuracy for all of the based models with
NeuralFuse on CIFAR-10 under 1% random bit error. When the MACs rate is large, it can achieve
better accuracy. Therefore, there exists a tradeoff between the amount of energy saving and the
perturbed model accuracy.

15



I Details for Model Parameters and MACs Value

We show the total numbers of parameters and MACs value in Table 8. We can find that all of our
generators are smaller than based models either on total model parameters or MACs values.

Table 8: The parameter counts and MACs for all based models and all generators used in this paper.

Model Parameter MACs
ResNet18 11, 173, 962 557.14M
ResNet50 23, 520, 842 1.31G
VGG11 9, 231, 114 153.5M
VGG16 14, 728, 266 314.43M
VGG19 20, 040, 522 399.47M
ConvL 723, 273 80.5M
ConvS 113, 187 10.34M

DeConvL 647, 785 64.69M
DeConvS 156, 777 22.44M

UNetL 482, 771 41.41M
UNetS 121, 195 10.58M

J Additional Experimental Results on Relaxed Access

We conducted more experiments on Relaxed Access to show that our NeuralFuse can protect the
models under different bit error rates. Here we show the results under 0.5% of bit error rate for all
three datasets in Table 9, and 0.35% for CIFAR-100 in Table 10. We can find that for both CIFAR-10
and GTSRB, larger generators like ConvL, DeConvL, and UNetL have better performance than small
generators, as we have seen in the previous section. In addition, although the improvements are less
obvious on CIFAR-100 (the more difficult dataset), we can still conclude that our NeuralFuse is
applicable to different datasets.

Table 9: Testing accuracy under 0.5% of random bit error rate. Notations: B.M. (based model),
C.A. (clean accuracy), P.A. (perturbed accuracy), N.F. (NeuralFuse), and IP (total improvement of
P.A.+N.F. v.s. P.A.).

B.M. N.F. CIFAR-10 GTSRB CIFAR-100
C.A. P.A. C.A.+N.F. P.A.+N.F. IP C.A. P.A. C.A.+N.F. P.A.+N.F. IP C.A. P.A. C.A.+N.F. P.A.+N.F. IP

ResNet18

ConvL

92.6

90.43 87.915± 2.16 17.836

95.51

93.38 89.549± 1.89 14.313

73.69

65.18 38.951± 7.137 18.053
ConvS 91.72 78.414± 8.292 8.335 94.79 87.676± 4.247 12.44 69.97 24.48± 7.587 3.582

DeConvL 70.079 90.15 90.018± 0.157 19.939 75.236 95.392 93.379± 1.125 18.143 20.898 66.26 38.247± 6.876 17.349
DeConvS ±11.565 84.14 79.881± 3.56 9.802 ±12.665 95.76 90.086± 3.28 14.85 ±7.406 68.16 25.863± 6.757 4.965

UNetL 89.67 86.316± 2.401 16.237 96.231 93.515± 1.563 18.279 66.23 40.129± 6.447 19.231
UNetS 90.93 80.743± 5.767 10.664 95.519 91.434± 2.753 16.198 67.07 28.826± 6.82 7.928

ResNet50

ConvL

92.55

90.26 86.45± 3.204 25.45

94.96

94.58 90.55± 3.74 16.568

73.45

68.39 28.845± 6.675 7.595
ConvS 90.82 73.263± 8.69 12.263 95.424 84.509± 8.532 10.527 71.86 23.172± 6.876 1.922

DeConvL 61 89.54 87.212± 2.514 26.212 73.982 94.743 91.601± 2.874 17.619 21.25 68.1 28.628± 6.983 7.378
DeConvS ±10.286 90.3 75.459± 8.061 14.459 ±13.027 94.576 87.441± 5.88 13.459 ±6.961 70.295 24.953± 6.743 3.703

UNetL 89.88 83.906± 3.632 22.906 96.548 93.718± 2.321 19.736 66.56 36.507± 6.217 15.257
UNetS 89.68 76.084± 7.151 15.084 95.899 90.642± 4.793 16.66 69.09 26.083± 6.627 4.833

VGG11

ConvL

88.35

89.84 86.962± 1.344 23.345

91.86

93.864 92.59± 0.71 27.724

64.82

63.1 38.821± 9.29 14.953
ConvS 88.2 74.492± 5.693 10.875 90.934 80.533± 3.547 15.667 62.67 27.854± 10.2 3.986

DeConvL 63.617 89.6 86.864± 1.094 23.247 64.866 93.595 91.926± 0.643 27.06 23.868 63.58 40.046± 9.024 16.178
DeConvS ±9.259 88.27 75.686± 4.624 12.069 ±10.787 92.272 83.081± 3.68 18.215 ±9.364 61.88 29.778± 9.9 5.91

UNetL 88.03 82.416± 1.793 18.799 94.79 90.612± 1.739 25.746 61.83 37.771± 9.007 13.903
UNetS 88.07 75.767± 4.323 12.15 94.64 88.938± 2.204 24.072 61.65 29.838± 9.653 5.97

VGG16

ConvL

90.31

90.21 88.469± 0.88 21.909

95.23

95.558 93.232± 1.84 34.435

67.77

61.83 41.058± 5.553 18.685
ConvS 89.93 77.756± 4.848 11.196 94.307 82.158± 6.154 23.361 63.79 27.484± 6.834 5.111

DeConvL 66.56 89.71 88.221± 0.957 21.661 58.797 95.59 93.107± 2.034 34.31 22.373 62.75 42.132± 5.511 19.759
DeConvS ±8.051 90.01 78.374± 4.732 11.814 ±8.885 95.139 84.038± 5.26 25.241 ±7.029 62.07 29.862± 6.671 7.489

UNetL 88.96 86.153± 1.469 19.593 95.978 92.777± 1.964 33.98 61.74 41.26± 5.049 18.887
UNetS 89.03 80.238± 3.526 13.678 95.384 87.768± 3.553 28.971 61.58 31.286± 6.26 8.913

VGG19

ConvL

90.48

90.36 88.088± 1.81 23.887

95.47

95.614 93.36± 2.13 24.212

67.84

65.61 46.485± 6.795 12.462
ConvS 89.6 74.516± 8.963 10.315 94.901 86.979± 4.42 17.831 66.57 38.255± 6.795 4.232

DeConvL 64.201 90.43 88.515± 1.384 24.314 69.148 95.455 92.445± 2.222 23.297 34.023 65.74 46.876± 7.059 12.853
DeConvS ±12.418 89.71 75.24± 8.61 11.039 ±11.142 95.511 88.826± 3.68 19.678 ±9.551 66.53 39.037± 3.654 5.014

UNetL 89.14 84.986± 2.718 20.785 94.909 91.737± 2.507 22.589 65.46 46.944± 6.456 12.921
UNetS 89.22 77.14± 7.256 12.939 96.453 90.766± 3.366 21.618 66.31 40.149± 7.962 6.126
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Table 10: Testing accuracy under 0.35% of random bit error rate on CIFAR-100 only.

B.M. N.F. CIFAR-100
C.A. P.A. C.A.+N.F. P.A.+N.F. IP

ResNet18

ConvL

73.69 31.441± 7.602

69.36 42.888± 6.226 11.447
ConvS 72.14 35.117± 7.268 3.676

DeConvL 69.2 42.876± 5.498 11.435
DeConvS 71.64 35.829± 5.498 4.388

UNetL 70.31 46.311± 5.541 14.87
UNetS 70.94 38.309± 6.434 6.868

ResNet50

ConvL

73.45 35.674± 8.635

71.98 40.819± 7.525 5.145
ConvS 72.95 37.389± 7.962 1.715

DeConvL 71.65 41.748± 7.672 6.074
DeConvS 72.81 38.938± 7.927 3.264

UNetL 70.81 45.281± 6.691 9.607
UNetS 72.59 39.555± 7.806 3.881

VGG11

ConvL

64.82 31.278± 10.021

63.93 42.355± 8.988 11.077
ConvS 63.94 41.767± 8.296 10.489

DeConvL 64.03 42.818± 9.071 11.54
DeConvS 63.53 36.056± 10.069 4.778

UNetL 63.45 40.877± 9.306 9.599
UNetS 63.8 35.746± 9.925 4.468

VGG16

ConvL

67.77 31.108± 7.15

64.93 44.925± 5.275 13.817
ConvS 65.96 36.255± 6.067 5.147

DeConvL 64.98 46.576± 5.175 15.468
DeConvS 64.87 38.064± 6.333 6.956

UNetL 64.79 46.766± 4.613 15.658
UNetS 65.01 39.808± 5.920 8.7

VGG19

ConvL

67.84 42.171± 9.382

66.91 49.151± 7.376 6.98
ConvS 67.72 45.337± 8.539 3.166

DeConvL 67.32 49.811± 7.631 7.64
DeConvS 67.74 45.736± 8.429 3.565

UNetL 67.42 50.022± 7.478 7.851
UNetS 67.53 46.639± 8.413 4.468
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K Additional Experimental Results on Transferability

We conduct more experiments on Restricted Access to show that our NeuralFuse can transfer to protect
different black-box models. In Table 11, we show the results on CIFAR-10 in which NeuralFuse is
trained under 1% bit error rate. In Table 12, 13 we show the results on GTSRB in which NeuralFuse
is trained under both 1.5% and 1% bit error rate separately. In Table 14, 15, we show the results on
CIFAR-100 in which NeuralFuse is trained under 1%, and 0.5% bit error rate separately. The results
show that VGG19 as the white-box surrogate model can have better transferability than ResNet18 for
all datasets. On the other hand, in some cases, We can find that if we try to transfer the generators to
the target models, which have similar architectures to the surrogate model under a smaller bit error
rate than what is used in training, then the results after transferring can be better than the original
results with NeuralFuse. For example. in Table 11, if we use VGG19 as a source-based model
with ConvL as a generator, and then transfer to VGG19 with ConvL under 0.5% bit error rate, then
the accuracy after transferring is 88.913%, which is slightly better than original result 88.469% on
VGG16. Besides, VGG19 under 0.5% can attain similar results for both ConvL and UNetL. We
conjecture that this is because the generators trained on a larger bit error rate can cover the error
patterns of a smaller bit error rate, and thus they can have better generalizability under a smaller bit
error rate.

Table 11: Transferred results trained by 1% of random bit error rate on CIFAR-10 dataset. Notations:
S.M. (source model, used for training generators), T.M. (target model, used for testing generators),
B.E.R (the bit error rate of the target model), C.A. (clean accuracy, %), P.A. (perturbed accuracy, %),
N.F. (NeuralFuse), and IP (total improvement of P.A.+N.F. v.s. P.A.).

S.M. T.M. B.E.R. ConvL UNetL
C.A.+N.F. P.A.+N.F. IP C.A.+N.F. P.A.+N.F. IP

ResNet18

ResNet18 0.5% 89.78 89.545± 0.205 19.466 86.55 86.165± 0.251 16.086

ResNet50 1%
89.51

36.041± 19.244 9.93
85.18

38.825± 19.254 12.714
0.5% 75.11± 10.737 14.11 77.097± 5.047 16.097

VGG11 1%
88.37

62.516± 8.417 20.349
76.75

61.057± 8.492 18.89
0.5% 80.957± 4.558 17.34 73.69± 2.982 10.073

VGG16 1%
89.55

63.343± 18.49 27.639
85.17

59.935± 16.423 24.231
0.5% 84.956± 3.386 18.396 80.226± 4.49 13.666

VGG19 1%
89.57

50.675± 22.355 14.654
85.34

51.088± 15.969 15.067
0.5% 80.203± 8.67 16.002 76.526± 7.81 12.325

VGG19

ResNet18 1%
89.83

61.042± 17.158 22.099
87.03

69.698± 11.199 30.755
0.5% 86.107± 6.943 16.028 84.207± 2.985 14.128

ResNet50 1%
89.89

33.986± 19.04 7.875
87.02

44.204± 17.216 18.093
0.5% 76.526± 10.411 15.526 80.649± 4.194 19.649

VGG11 1%
89.73

76.531± 7.02 34.364
87.05

79.942± 5.623 37.775
0.5% 88.024± 2.12 24.407 85.448± 0.777 21.831

VGG16 1%
89.6

75.522± 12.179 39.818
87.18

78.857± 7.819 43.153
0.5% 88.913± 0.616 22.353 86.212± 0.347 19.652

VGG19 0.5% 89.84 89.55± 8.67 25.349 87.35 86.756± 0.375 22.555

Table 12: Transferred results trained by 1.5% of random bit error rate on GTSRB dataset.

S.M. T.M. B.E.R. ConvL UNetL
C.A.+N.F. P.A.+N.F. IP C.A.+N.F. P.A.+N.F. IP

ResNet18

ResNet18 1%
95.693

93.927± 1.886 57.006
94.861

94.397± 0.432 57.476
0.5% 95.709± 0.184 20.473 94.846± 0.246 19.61

ResNet50 1%
94.434

37.024± 22.471 7.49
94.41

47.072± 23.398 17.538
0.5% 77.463± 13.311 3.481 84.809± 9.482 10.827

VGG11 1%
92.835

45.155± 10.303 10.291
91.409

50.527± 13.309 15.663
0.5% 79.39± 5.75 14.524 83.878± 4.23 19.012

VGG16 1%
95.439

31.057± 12.555 15.941
94.64

36.77± 11.638 21.654
0.5% 84.548± 8.322 25.751 86.025± 8.607 27.228

VGG19 1%
94.988

56.366± 14.591 19.794
94.315

60.777± 15.476 24.205
0.5% 86.915± 3.385 17.767 87.745± 3.766 18.597

VGG19

ResNet18 1%
88.401

50.328± 12.454 13.407
92.787

63.717± 15.521 26.796
0.5% 77.88± 7.388 2.644 87.482± 3.915 12.246

ResNet50 1%
87.546

29.707± 17.205 0.173
92.455

40.408± 20.5 10.874
0.5% 67.939± 16.567 −6.043 77.51± 14.717 3.528

VGG11 1%
89.66

47.053± 10.687 12.189
93.5

60.002± 12.248 25.138
0.5% 76.314± 5.064 11.448 85.955± 3.81 21.089

VGG16 1%
92.985

29.22± 14.5 14.104
93.048

38.398± 15.606 23.282
0.5% 75.676± 12.417 16.879 79.903± 8.327 21.106

VGG19 1%
95.115

87.409± 5.969 50.837
94.608

88.65± 5.003 52.078
0.5% 92.448± 2.426 23.3 92.376± 2.193 23.228
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Table 13: Transferred results trained by 1% of random bit error rate on GTSRB dataset.

S.M. T.M. B.E.R. ConvL UNetL
C.A.+N.F. P.A.+N.F. IP C.A.+N.F. P.A.+N.F. IP

ResNet18

ResNet18 0.5% 95.717 95.267± 0.454 20.031 96.247 95.707± 0.303 20.471

ResNet50 1%
94.497

35.566± 21.197 6.032
95.645

42.626± 23.398 13.092
0.5% 78.805± 13.447 4.823 87.305± 8.971 13.323

VGG11 1%
93.143

45.792± 11.276 10.928
93.991

47.109± 14.781 12.245
0.5% 81.84± 5.027 16.974 84.162± 4.768 19.296

VGG16 1%
95.455

26.512± 11.962 11.396
95.527

32.382± 11.286 17.266
0.5% 82.215± 9.026 23.418 85.394± 6.749 26.597

VGG19 1%
94.909

53.22± 14.544 16.648
95.614

60.905± 15.12 24.333
0.5% 85.441± 4.549 16.293 87.492± 3.714 18.344

VGG19

ResNet18 1%
93.69

53.1± 15.58 16.179
95.004

63.439± 18 26.518
0.5% 83.854± 7.631 8.618 89.656± 4.842 14.42

ResNet50 1%
92.827

30.591± 18.33 1.057
95.432

38.904± 21.458 9.37
0.5% 74.69± 17.721 0.708 81.546± 15.819 7.564

VGG11 1%
93.729

50.581± 11.212 15.717
95.052

58.884± 14.84 24.02
0.5% 82.341± 5.134 17.475 87.466± 3.747 22.6

VGG16 1%
95.218

27.794± 14.628 12.678
95.218

33.474± 14.384 18.358
0.5% 78.995± 11.512 20.198 81.813± 7.79 23.016

VGG19 0.5% 96.033 93.998± 2.197 24.85 95.368 93.881± 2.115 24.733

Table 14: Transferred results trained by 1% of random bit error rate on CIFAR-100 dataset.

S.M. T.M. B.E.R. ConvL UNetL
C.A.+N.F. P.A.+N.F. IP C.A.+N.F. P.A.+N.F. IP

ResNet18

ResNet18 0.5%
54.77

35.81± 5.159 14.912
50.56

39.287± 2.797 18.389
0.35% 41.706± 3.711 10.265 43.279± 1.407 11.838

ResNet50
1%

44.94
2.243± 2.048 −0.801

41.53
2.362± 1.912 −0.682

0.5% 15.918± 8.249 −5.332 17.106± 7.139 −4.144
0.35% 23.663± 7.122 −12.011 26.15± 5.582 −9.524

VGG11
1%

41.18
9.828± 5.579 1.596

37.54
10.159± 5.127 1.927

0.5% 24.172± 5.891 0.304 24.504± 4.675 0.636
0.35% 29.034± 5.375 −2.244 28.229± 4.514 −3.049

VGG16
1%

44.03
7.94± 3.71 1.341

39.48
10.131± 4.47 3.532

0.5% 22.416± 7.588 0.043 26.33± 5.317 3.957
0.35% 28.083± 5.906 −3.025 30.64± 3.615 −0.468

VGG19
1%

44.16
13.519± 6.058 2.949

40.74
15.61± 6.209 5.04

0.5% 27.85± 4.827 −6.173 29.181± 4.622 −4.842
0.35% 33.24± 48.19 −8.931 32.816± 3.894 −9.355

VGG19

ResNet18
1%

55.45
5.761± 3.686 1.173

57.29
6.757± 4.405 2.169

0.5% 24.578± 6.331 3.68 28.143± 5.948 7.245
0.35% 31.124± 5.011 −0.317 36.354± 4.502 4.913

ResNet50
1%

56.1
2.765± 2.09 −0.279

56.07
3.721± 2.381 0.677

0.5% 18.89± 8.591 −2.36 22.818± 8.468 1.568
0.35% 28.732± 8.195 −6.942 33.65± 7.026 −2.024

VGG11
1%

52.84
12.312± 8.371 4.08

53.86
15.35± 9.395 7.118

0.5% 30.02± 9.282 6.152 33.28± 7.222 9.412
0.35% 36.517± 7.723 5.239 38.769± 6.536 7.491

VGG16
1%

53.63
11.2± 4.364 4.601

55.24
13.563± 5.241 6.964

0.5% 32.43± 7.329 10.057 35.857± 6.175 13.484
0.35% 39.433± 6.263 8.325 42.389± 4.877 11.281

VGG19 0.5%
59.4

50.211± 3.057 16.188
58.73

49.066± 3.511 15.043
0.35% 53.074± 2.828 10.903 51.989± 3.145 9.818
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Table 15: Transferred results trained by 0.5% of random bit error rate on CIFAR-100 dataset.

S.M. T.M. B.E.R. ConvL UNetL
C.A.+N.F. P.A.+N.F. IP C.A.+N.F. P.A.+N.F. IP

ResNet18

ResNet18 0.35% 65.18 47.706± 4.874 16.265 66.23 49.249± 4.139 17.808

ResNet50 0.5%
62.51

24.005± 9.896 2.755
63.53

26.397± 9.101 5.147
0.35% 36.271± 8.942 0.597 39.384± 8.05 3.71

VGG11 0.5%
59.21

33.042± 9.848 9.174
61.08

34.151± 9.78 10.283
0.35% 40.382± 8.666 9.104 41.384± 9.047 10.106

VGG16 0.5%
59.49

34.704± 8.015 12.331
61.4

37.54± 6.763 15.167
0.35% 42.911± 5.955 11.803 45.261± 4.948 14.153

VGG19 0.5%
61.56

43.672± 6.202 9.649
62.01

45.036± 6.313 11.013
0.35% 49.014± 5.452 6.843 50.472± 5.325 8.301

VGG19

ResNet18 0.5%
66.07

24.916± 6.659 4.018
67.77

27.687± 6.827 6.789
0.5% 34.4± 5.434 2.959 38.103± 5.619 6.662

ResNet50 0.5%
66.16

22.657± 7.751 1.407
66.7

25.432± 8.019 4.182
0.35% 35.513± 7.678 −0.161 38.824± 7.5 3.15

VGG11 0.5%
59.89

29.262± 10.064 5.394
61

31.219± 9.831 7.351
0.35% 36.574± 9.533 5.296 38.101± 9.014 6.823

VGG16 0.5%
62.49

30.775± 7.311 8.402
62.62

33.03± 7.285 10.657
0.35% 39.988± 6.454 8.88 42.455± 5.924 11.347

VGG19 0.35% 65.61 51.979± 6.198 9.808 65.46 52.573± 6.06 10.402

L Additional Experiments on Adversarial Training

Adversarial training is a common strategy to derive a robust neural network against certain perturba-
tions. By training the generator using adversarial training proposed in [3], we report its performance
against low voltage-induced bit errors. We use ConvL as the generator and ResNet18 as the base
model, trained on CIFAR-10. Furthermore, we explore different K flip bits as the perturbation on
weights of the base model during adversarial training, and then for evaluation, the trained-generator
will be applied against 1% of bit errors rate on the base model. The results are shown in Table
16. After careful tuning of hyperparameters, we find that we are not able to obtain satisfactory
improvements when adopting adversarial training. Empirically, we argue that adversarial training
may not be suitable for training generator-based methods.

Table 16: Performance of the generator trained by adversarial training under K flip bits on ResNet18
with CIFAR-10. The results show that the generator trained by adversarial training cannot achieve
high accuracy against bit errors under 1% bit error rate. Notation: C.A. (clean accuracy, %), P.A.
(perturbed accuracy, %), N.F. (NeuralFuse), and IP (total improvement of P.A.+N.F. v.s. P.A.).

K-bits C.A.+N.F. P.A.+N.F. IP
100 92.37 38.307± 12.145 −0.636
500 92.14 38.653± 12.458 −0.29
5000 92.57 38.851± 12.513 −0.092
20000 60.11 22.967± 8.119 −15.976
100000 71.08 23.571± 6.587 −15.372
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