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Abstract

Due to the recent success of diffusion models, text-to-image generation is becoming
increasingly popular and achieves a wide range of applications. Among them, text-
to-image editing, or continuous text-to-image generation, attracts lots of attention
and can potentially improve the quality of generated images. It’s common to
see that users may want to slightly edit the generated image by making minor
modifications to their input textual descriptions for several rounds of diffusion
inference. However, such an image editing process suffers from long-standing
heuristics and low inference efficiency. This means that the extent of image editing
is uncontrollable, and unnecessary editing invariably leads to extra computation.
To solve this problem, we introduce Fast Image Semantically Edit (FISEdit), a
cached-enabled sparse diffusion model inference method for efficient text-to-image
editing. Extensive empirical results show that FISEdit can be 3.4× and 4.4× faster
than existing methods on NVIDIA TITAN RTX and A100 GPUs respectively, and
even generates more satisfactory images.

1 Introduction

The recent months have witnessed the astonishing improvement of diffusion models. Text-to-image
generation is one of the most popular applications of diffusion models, which involves generating
realistic images based on textual descriptions. While diffusion models have been shown to generate
high-quality images with good coverage of the data distribution, they require substantial computational
power to generate high-quality images. Thus, it is an emerging research area to make the generation
process of diffusion models more effective and efficient.

Our target scenario. In real-world cases, after an image has been generated, it is common that the
user may be unsatisfied with some specific regions of the generated image and desire to make subse-
quent semantic edits. Figure 1 demonstrates a concrete example. The user may wish to interactively
edit the image by making minor modifications to the textual description. These modifications involve
adding specifications (e.g., adding a “river” or the “fireworks”) or replacing words/phrases (e.g.,
replacing the “river” with “snow mountain”). To be specific, in each round of editing, the user expects
to make changes to only a small, specific region (affected region) and keep the rest (non-affected
regions) untouched.

Challenges. However, we find that the current implementations fall short in supporting such a
semantic editing system effectively and efficiently. First, due to the diversity nature of diffusion
models, existing methods tend to make significant changes to the image, and therefore the process
suffers from long-standing heuristics. Although there are applications that allow users to provide
masks to control the in-painting regions, it would lead to poor user experience. Second, even though
only a small region is expected to be modified, existing works typically follow the vanilla inference
process of diffusion models, which generates the entire image from scratch, without taking the spatial
property into account. Undoubtedly, this is a waste of time and computational resources since the
generation of non-affected regions is pointless.
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Figure 1: An example of the user’s interaction with FISEdit.

In essence, to support the semantic editing task effectively and efficiently, there involves two technical
issues: (1) how to automatically and accurately detect the affected region to be revised given the
original image and the modified description and (2) how to focus on the target region during the
generation while skipping the non-affected regions?

Summary of contributions. In this paper, we develop a brand new ML-based method for the
semantic editing system. The technical contributions of this work are summarized as follows.

• We introduce Fast Image Semantically Edit (FISEdit), a framework for minor image editing with
semantic textual changes. FISEdit is a direct application to the inference process of pre-trained
diffusion models and does not need to train new models from scratch. To support the interactive
semantic editing task, FISEdit caches the feature maps of the latest generation process and addresses
the two technical issues respectively.

• For the first issue, we present a fine-grained mask generation algorithm to capture the specific region
for editing. To be specific, we quantify the distance between the cached and ad hoc feature maps
given the modified textual description. Subsequently, we extract the region displaying substantial
differences.

• Based on the detected region and the cached feature maps, we propose a sparse updating approach
to minimize unnecessary computational burden.

• We thoroughly evaluate the performance of FISEdit with extensive experiments. Compared with
existing text-based image editing works, FISEdit can generate high-quality images that are more
consistent to the semantic edit. Furthermore, FISEdit outperforms existing works in terms of
generation efficiency by 4.4× on NVIDIA TITAN RTX and 3.4× on NVIDIA A100.

2 Related works

As current image editing systems are computationally expensive and time-consuming, especially
when dealing with high-resolution images, various methods have been explored to accelerate this
process. Firstly, many recent works [1, 2, 3, 4, 5, 6, 7, 8, 9] have successfully reduced the number of
iteration steps required for diffusion model inference while maintaining or improving the quality of
the generated samples. All these research directions are orthogonal to ours and can be integrated with
FISEdit.

Another way to accelerate image editing is reducing computation by exploiting the sparsity of the
input data or the model parameters. There are several techniques [10, 11, 12, 13, 14, 15, 16, 17]
available for implementing sparse computation. However, directly applying existing techniques
such as tiled sparse convolution [13] fails to achieve considerable speedup and image quality in our
scenario.

SIGE [18] is a general-purpose sparse inference framework for generative models, which integrates
sparse convolution techniques into image editing tasks and makes sufficient use of data sparsity. How-
ever, SIGE [18] faces limitations when applied to Stable Diffusion [19] models due to its significant
additional memory overhead requirement and inability to support textual changes. Therefore, we
will not include SIGE as a baseline in the experimental part. In comparison to SIGE, our proposed
framework supports more efficient sparse kernels and addresses its limitations, including batched
input restrictions, intermediate activation management and fine-grained mask generation designed to
detect areas affected by semantic changes.
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Figure 2: Overview structure of FISEdit. When a query arrives, our system firstly executes k denoise
steps, and then generates difference mask according to the output activation of step k. In the remaining
denoise steps, the pre-computed results are reused and the latents will be computed sparsely.

3 Method

Figure 2 shows the overview structure of FISEdit. Below, we first introduce a method to detect
affected areas and generate difference mask for the subsequent sparse computation. Then we present
our improved implementation of sparse computation algorithms.

3.1 Fine-grained mask generation

Difference masks are used in image editing tasks to index changed regions, but existing models have
sub-optimal performance when the user cannot draw a precise mask. To address this, we propose
a mask generation method, which automatically identifies the image areas that require substantial
change according to the modification of textual description.

Target area capture. To detect the affected areas in feature maps, we observe the feature maps in
each step of the Stable Diffusion [19] inference process and compare them using two similar textual
prompts. Unfortunately, even though we have controlled the random factors, the changed regions
remain large and unpredictable. Drawing inspiration from Prompt-to-Prompt [20], these irregular
spatial changes can be controlled by enhancing cross-attention [21] module. Specifically, we cache
and preserve part of the cross-attention map corresponding to the unchanged text prompts in the calls
with new description, and then the changed regions can be structured and easily located through few
denoise steps. As demonstrated in Figure 3, the difference caused by textual change can be observed
clearly in step 5 to 10 and convert to a mask after finding the proper threshold ϵ via the following
formula:

diff := Normalize

(
t2∑

t=t1

|Xt − Yt|

)
, t1, t2 ∈ [1, 10]

A := {i|diffpixeli < ϵ}, B := {j|diffpixelj ≥ ϵ}, N1 := Card(A), N2 := Card(B)

argmax
ϵ∈[0,1]

OTSU(ϵ) :=
N1N2

(N1 +N2)
2

(
1

N1

∑
i∈A

diffpixeli −
1

N2

∑
j∈B

diffpixelj

)2

Consequently, we no longer need extra diffusion steps to calculate the mask as our previous work did
(e.g., DIFFEdit [22]).

Sparsity analysis. We evaluate our method by generating mask for the human-written dataset
used by InstructPix2Pix [23], where each sample in the dataset contains an original and manually
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Figure 3: Variation of latent difference with iteration steps.

modified caption for an image. We find that the average edited size for these samples is less than
30%, reflecting an astonishing fact that most image regions can be reused and numerous calculations
can be potentially saved. However, when the feature map is compressed to low-resolution, sparsity
decreases correspondingly. Consequently, we adopt the sparse computation for high-resolution inputs
only, and forgo those with low-resolution.

3.2 Sparse computation

We focus on the U-Net [24] modules since they are the most time-consuming and influential compo-
nents in the image generation process. The U-Net architecture is composed of several attention and
ResNet [25] modules. Based on the observation in the previous section, it is practicable to perform
sparse calculations on a small proportion of the whole image in the above modules. We discuss our
optimization on these modules in the appendix.

4 Discussion

Conclusion Existing image editing methods fail to exploit the similarity between previous and
current diffusion model calls, wasting a large amount of computation. To sufficiently reuse prior
results, we have solved the three challenges: difference detection, sparse computation and pre-
computed data management. The experimental results indicate that our method can accurately edit the
details of images while achieves a considerable speedup compared to vanilla image editing methods.

Limitations. Our method has a poor performance when editing a low-resolution images (e.g.,
256 × 256). This is because, the image changes caused by semantic modification do not exhibit
adequate sparsity in low-resolution images. However, GANs [26, 27] hold a competitive position
in low-resolution image generation, and have less computational overhead compared to diffusion
models, meaning that large image generation is the main challenge for real-world deployment.

Moreover, although we have optimized the memory overhead of image editing for diffusion model,
about 1GB additional memory usage is still demanded in every iteration steps. But with FISEdit,
this additional memory overhead can be on any of CPU, disk, or GPU, which is tolerable for model
deployment in real-world use. In addition, as research on a few-step sampler for diffusion models
keeps moving forward, we believe that FISEdit will have better performance in the future.

Real-world Applicability. With our method, it is possible to design a cache system for a real-
world text-to-image service. Specifically, when a user query that contains a text is received, we can
search for the most similar text-image pairs stored in the cache and process this query sparsely and
incrementally, thereby achieving better system throughput.
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A Sparse modules

A.1 Adaptive pixel-wise sparse convolution.

Tiled sparse convolution algorithm was proposed in SBNet [13] to handle sparse data within ResNet
modules. However, as we mentioned in Section 3.1, sparsity will decrease when processing low-
resolution feature maps, and this is particularly obvious in tiled sparse convolution layers. Therefore,
directly applying existing technique fails to achieve considerable speedup and image quality in our
scenario.

Given that the efficiency of this algorithm is largely contingent on the distribution of difference masks
and the size of split blocks, the constant block-gather strategy used in SBNet doesn’t seem plausible.
Therefore, it is essential to select a compatible block size with the given mask. We introduce Adaptive
Pixel-wise Sparse Convolution (APSC) to ensure tiled sparse convolution achieves desired effect
when dealing with capricious mask. We denote (h,w), Nm

h,w as the block’s spatial size and the
number of blocks gathers using given mask m respectively, and assume the kernel size is (hk, wk).
We search for the optimal division strategy heuristically via the following approximation:

argmin
h,w∈{2,4,8,16,32}

f(h,w) := (h− hk + 1) ∗ (w − wk + 1) ∗Nm
h,w

All the variables mentioned above can be determined during the preprocessing stage, ensuring that
APSC does not introduce any additional computational costs to model inference.

A.2 Approximate normalization.

Since some normalization layers such as group normalization [28] entail calculating the mean and
variance of the feature map in spatial dimension, it is infeasible to use sparse feature map in these
layers. Inspired by batch normalization [29], which uses the mean and variance during training
for model inference, it is plausible to use approximate methods in normalization layer. With the
assumption that a tiny textual modification will not affect the distribution of the whole image, we are
able to cache the mean and variance computed in the previous image generation and directly reuse
them to facilitate the sparse inference process. Therefore, without the reliance on the statistics of the
input feature map, sparse computation is available in all normalization layers.
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Figure A1: Overall improvement of our attention module.

A.3 Approximate attention.

Recent diffusion models have incorporated self-attention [30] and cross-attention [21] modules to
enhance the image quality and the correlation between image and text in text-to-image tasks, resulting
in computational bottlenecks. Readers might suspect whether it is possible to utilize the sparsity of
edited areas in attention layers, since the whole feature map is required to be used in self-attention
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layers in order to learn the long-term relevance among pixels. Intuitively, if we only calculate the
results using non-zero regions in difference mask, the output will be inevitably deviated from the
accurate result. Fortunately, such precision errors can be controlled to a tolerable range through some
accuracy compensation measures. Specifically, we only apply sparse computation in the self-attention
layers with a high-resolution input feature map. In these layers, non-zero regions account for only a
small proportion of the entire feature map, and their influence on the unaffected area is consequently
negligible, particularly after the SoftMax layer.

Figure A1 shows the overview of our implementation of attention modules. Masked regions are
collected before being input into the subsequent self-attention and cross-attention layers, utilizing
sparse data exclusively within the attention layers to avoid unnecessary data movement.

B Experiment

B.1 Experimental design

We implement our system based on the HuggingFace’s diffusers1, which is a generic framework
for training and inference of diffusion models. We clone this project and integrate it with our
self-developed sparse inference engine2. The source code has been made publicly available at
https://github.com/Hankpipi/diffusers-hetu.

Baselines. We compare our method with the following baselines, and all the implementations for
them can be found in HuggingFace’s diffusers. All the baselines and our method use the pre-trained
weights and configurations of the Stable Diffusion v2 model3 (e.g., the output image size is 768×768),
and more details about our evaluation configurations can be found in our supplementarial materials.

• Vanilla stable diffusion text-to-image pipeline (SDTP). A simple attempt to edit image is to fix the
internal randomness (e.g., the initial latent) and regenerate using the edited text prompt.

• Other image editing systems. Stable diffusion in-painting pipeline (SDIP), Prompt-to-Prompt [20],
SDEdit [31], InstructPix2Pix [23], DIFFEdit [22], PPAP [32] and Pix2Pix-Zero [33].

Datasets & Metrics. Following prior works [23, 31], we select LAION-Aesthetics [34] as our
evaluation dataset. We use Image-Image similarity [35], Directional CLIP similarity [36], FID [37]
and CLIP Accuracy [38] to evaluate the quality of image editing.

B.2 Main results

Image quality. We show the quantitative results in Figure A2 and the qualitative results in Figure A3.
We find that image-image similarity is competing with CLIP accuracy and directional CLIP similarity,
which means that increasing the degree to which the output images correspond to a desired text will
reduce their consistency with the input image. In order to show the tradeoff between two metrics, we
have varied representative parameters for the methods. It can be inferred from these metrics that our
method can better locate and modify changing areas as well as reflect the meaning of the text.

Model efficiency. We present efficiency comparison results in Table A1. We observe that all
baselines struggle to generate or edit images efficiently since they cannot leverage the sparsity to
avoid unnecessary computations. Worse, InstructPix2Pix [23] even encounter both computation
and memory bottlenecks. In contrast, our method can accurately edit the details of image, and also
reduces the computation of diffusion models by up to 4.9× when the image size is 768× 768 and the
edit size is 5%. Eventually, we accelerate text-to-image inference by up to 4.4× on NVIDIA TITAN
RTX and 3.4× on NVIDIA A100 when the edit size is 5%.

1https://github.com/huggingface/diffusers
2https://github.com/Hankpipi/Hetu/tree/diffusers
3https://huggingface.co/stabilityai/stable-diffusion-2
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Figure A2: Quantitative results of the images generated by baselines and our method, demonstrating
the trade-off between consistency with the input image and consistency with the semantic change. We
vary InstructPix2Pix’s image guidance scale between [1.0, 2.5], SDEdit’s strength between [0.5, 0.75],
DIFFEdit’s strength between [0.5, 1.0], and edited size between [0.25, 0.75] for SDIP and our method.
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Figure A3: Qualitative results of the images generated by baselines and our method.

Method
Property Efficiency

No Extra Training Partially Edit Edit Size MACs TITAN RTX A100 PCle 40GB

Value Ratio Value Ratio Value Ratio

SDTP ✓ ×
- 1901G 1.0× 1.83it/s 1.0× 3.86it/s 1.0×SDIP × ✓

Prompt-to-Prompt ✓ ×
pix2pix-zero ✓ × - - - OOM - OOM -PPAP ✓ ×

InstructPix2Pix × × - 4165G 0.5× OOM - 2.29it/s 0.6×
SDEdit ✓ × - 1521G 1.2× 2.28it/s 1.2× 4.82it/s 1.2×

DIFFEdit ✓ ✓ - 3041G 0.6× 1.15it/s 0.6× 2.42it/s 0.6×

FISEdit ✓ ✓

30% 835G 2.3× 4.06it/s 2.2× 9.57it/s 2.5×
15% 485G 3.9× 5.64it/s 3.1× 11.6it/s 3.0×
5% 386G 4.9× 8.14it/s 4.4× 13.1it/s 3.4×

Table A1: Property and efficiency evaluation of each method. We use the Multiply-Accumulate
Operations (MACs) of U-Net to measure computational cost and the number of U-Net calls completed
per second as a measure of speed, since U-Net calls are the computational bottleneck of the above
models. Due to the fact that the inference speed of the baseline models will not be affected by the
size of modifications, we do not discuss edit size for them.
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