
OMPAR: Automatic Parallelization with AI-Driven
Source-to-Source Compilation

Tal Kadosh
Ben-Gurion University, IAEC

Israel
talkad@post.bgu.ac.il

Niranjan Hasabnis
Code Metal

United States
niranjan@codemetal.ai

Prema Soundararajan
University of Alabama at Birmingham

United States
prema@uab.edu

Vy A. Vo
Intel Labs

United States
vy.vo@intel.com

Mihai Capotă
Intel Labs

United States
mihai.capota@intel.com

Nesreen K. Ahmed
Cisco

United States
nesahmed@cisco.com

Yuval Pinter
Ben-Gurion University

Israel
pintery@bgu.ac.il

Gal Oren
Stanford University, Technion

United States
galoren@stanford.edu

Abstract

Existing automatic code parallelization tools are either too conservative (formal-
methods based tools) or are too inaccurate (AI-based tools). This paper introduces
OMPAR, an AI-driven tool that breaks the problem into two sub-problems of
parallelism detection and parallel pragma generation and then integrates two state-
of-the-art models to solve the problem. We evaluate OMPAR and competing
existing tools in terms of accuracy (in suggesting correct pragma), syntax, seman-
tics, and run-time performance of suggested pragmas. Overall, we found that
OMPAR outperforms existing tools in accurately suggesting parallelization prag-
mas. Moreover, we found that OMPAR-suggested pragmas are also syntactically-
and semantically valid (high compilation and test success rate), and they also
deliver performance improvement over corresponding baseline serial programs.
The sources of this work are available at our OMPAR repository.

1 Introduction
Automatic parallelization has been an active area of research in the parallel programming community
to eliminate/reduce the need of manual parallelization. Automatic parallelization approaches can be
broadly classified into two types: (1) formal approaches of source-to-source transformation tools or
auto-parallelizing compilers, and (2) AI-based approaches.

Formal approaches for automatic parallelization use deterministic methods (such as syntax-driven
translation rules etc). These tools translate the program’s source code into a parallelized version,
typically by inserting parallelization directives1 or annotations (e.g., OpenMP pragmas [27]) into the
code. Our recent evaluation of AutoPar, a state-of-the-art source-to-source auto-parallelization tool,
revealed several limitations (covered in details in Appendix A.1.1), such as incorrect parallelization
that changed the program semantics, missing the parallelization opportunity altogether, etc.

1OpenMP pragma annotations on for loops allow such loops to improve performance by using multi-
threading to process computations inside the loop concurrently.

Machine Learning for Systems Workshop, NeurIPS 2024.

https://github.com/Scientific-Computing-Lab/OMPar

?#include <stdio.h>
static long num_steps = 1024*1024*1024;
double step;
int main(){
 int i;
 double x, pi, sum = 0.0;
 double start_time, run_time;
 step = 1.0 / (double) num_steps;

 for (i = 0; i < num_steps; i++) {
 x = (i + 0.5) * step;
 sum += 4.0 / (1.0 + x * x);}

 pi = step * sum;
}

#pragma omp for
reduction(+:sum) private(x)

#pragma omp for
reduction(+:sum) private(x)

AutoPar

ICPC

OMPify MonoCoder
 (OMP-finetuned)

BINARY

 Compile & Run Multi-core Scaling Results V&V

?=?

OMPar

Figure 1: Overview of end-to-end workflow with OMPAR and other competing tools

Recent breakthroughs in AI, such as large language models (LLMs) for natural language processing
(NLP) and code generation, have led to considerable interest in developing specific AI models
for automatic code parallelization [5, 20, 26]. Yet when Nichols et al. recently evaluated popular
LLMs such as GPT-4 and LLaMa-2 with their ParEval benchmark [30], they found that “LLMs are
significantly worse at generating parallel code than they are at generating serial code”. They further
comment that “the poor performance of LLMs on ParEval indicates that further efforts are necessary
to improve the ability of LLMs to model parallel code and/or create new LLMs that are specialized
for parallel code generation.”

Our paper proposes a novel automatic parallelization approach, named OMPAR, that employs a
modular approach by integrating multiple state-of-the-art AI models in the parallelization pipeline,
each designed for a specific task – OMPIFY for assessing the parallelization potential of loops
and MONOCODER-OMP for generating precise OpenMP pragmas. This modular approach allows
for greater flexibility (such as fine-tuning them) and accuracy compared to monolithic LLMs that
attempt to handle all aspects of code generation within a single model and can output a wide range of
responses. In fact, MONOCODER-OMP is a domain-specific (HPC-specific) model that precisely
exploits this capability by leveraging C/C++ serial and parallel programs for fine-tuning, thereby
improving its performance on the task of parallelization and pragma generation.

Contributions. 1 We propose OMPAR, a novel approach that combines two state-of-the-art AI
models: OMPIFY [22] for loop parallelization determination and MONOCODER [21] (fine-tuned
on OpenMP codes, MONOCODER-OMP) for pragma generation. 2 We evaluate the accuracy
and performance of OMPAR using ground-truth labels and compile-and-run checks against the
HeCBench benchmark, and comparing it against existing automatic parallelization compilers, namely
ICPC and AutoPar. 3 Our results show that OMPAR achieves superior performance compared to
existing automatic parallelization compilers, even when provided with partial codes, highlighting the
robustness and scalability of our approach.

2 OMPAR: LLM-based source-to-source parallelization compiler
Task objective. While a lot of progress has been made in integrating machine learning into the
identification of parallelism opportunities in C/C++ programs [4, 20, 22, 43], there has been a
notable gap in connecting parallelism detection with code generation. Our work bridges this gap
by leveraging OMPIFY for parallelism detection and MONOCODER for parallel code generation.
Specifically, we fine-tune MONOCODER on HPCorpusOMP and call it MONOCODER-OMP (see
Appendix B for fine-tuning details.)

OMPAR pipeline design. Figure 1 shows the high-level overview of our pipeline with OMPAR.
OMPAR first uses OMPIFY to determine whether the loop should have a pragma. If the pragma is
not applicable, OMPAR will return this result. If the pragma is deemed necessary, MONOCODER is
then used to generate the complete pragma for the given for loop.

We chose OMPIFY and MONOCODER-OMP out of comparative models from Table 4 as they are
1 SOTA models with excellent performance for their tasks with C and C++ languages, 2 trained

on the same large-scale parallel-computing-oriented dataset, and 3 designed as targeted small
domain-specific language models, which can be deployed even on average computer systems.

2

3 Experimental evaluation
Our experimental evaluation is designed to answer the following research questions:

• RQ1: How accurately can OMPAR predict correct OpenMP pragma for a given for loop?

• RQ2: Do programs with OMPAR-suggested pragmas compile and run correctly? If so, what is
their runtime performance and scalability in a multi-core, shared-memory environment?

The first research question evaluates OMPAR as an AI model; the second research question evaluates
its ability to suggest syntactically-correct and high-performance pragmas.

3.1 Experimental setup
HeCBench benchmark. HeCBench is a novel heterogeneous computing benchmark suite with
over 350 benchmarks, written in CUDA, SYCL, HIP, and OpenMP, spanning diverse domains,
including machine learning, image processing, etc [19]. Moreover, all the OpenMP benchmarks from
HeCBench follow a uniform compilation recipe2 and also contain test inputs, reference output, and a
check that compares reference output with the generated output.

Preprocessing. We first checked that HeCBench was not part of the pre-training or fine-tuning dataset
of MONOCODER. Next, we performed a basic sanity check of OpenMP benchmarks by attempting
to compile them, run them with a timeout of 10 minutes (to choose a reasonable time on our test
system), and check that the benchmarks passed the output correctness check. We found that 223
OpenMP benchmarks passed all the tests.

Test dataset generation. We then extracted all the for loops from those 223 benchmarks that had
some OpenMP pragma3. In all, the dataset contained 385 for loops having an OpenMP pragma.
We balanced the dataset in terms of “negative” for loops — loops that do not contain any OpenMP
pragma — by randomly choosing 385 such for loops from HeCBench’s OpenMP benchmarks. In
summary, our dataset for the evaluation contained 770 for loops. In terms of OpenMP benchmarks,
it covered 175 of 223 benchmarks.

Baselines. We use AutoPar [24] from ROSE-0.11.46.0.1, a static source-to-source-based automatic
parallelization tool, and ICPC, Intel’s auto-parallelizing compiler from Intel(R) oneAPI DPC++/C++
Compiler 2022.0.0, as baselines for this experiment. Specifically, because both AutoPar and ICPC
operate on complete programs (as opposed to a single for loop), we generate serial versions of
HeCBench’s OpenMP benchmarks by removing all OpenMP pragmas from them4. We ran compiled
benchmarks on a dual-socket, 80-core, Intel Xeon Platinum 8380 CPU, running at 2.30GHz with
hyper-threading enabled.

Evaluation methodology. Our evaluation methodology is broken down into two sub-steps (Figure 1,
right): 1 Accuracy test. This test is designed to answer RQ1. In this test, we feed each loop out of
770 for loops to all three tools separately and compare the pragma generated by them or lack thereof
with the ground-truth pragma (i.e., label). We use standard machine learning metrics (precision,
recall, accuracy) to report the performance of every tool on this test. 2 Compile & run, scale and
validation test. This test is designed to answer RQ2. If the tool that we are evaluating generates
some OpenMP pragma for the input for loop, then we insert that pragma in the OpenMP benchmark,
which contains that loop. In other words, we replace the original pragma of the loop with the inferred
pragma. Then, we attempt to compile that benchmark, execute it with the test input (that comes along
with the benchmark), and compare the expected benchmark output with the actual output. We also
measure the execution runtime for different values of OMP_NUM_THREADS, the environment variable
that controls the number of threads in a parallel for region. As a baseline for the execution runtime
comparison, we run HeCBench OpenMP benchmarks in their default setting.

3.2 Results
Results on accuracy test (RQ1). Overall, we found that OMPAR was reporting a decent accuracy of
74% on the HecBench loops dataset (the first row of the Table 1). After a careful analysis, we found

2Although HeCBench is a benchmark suite for heterogeneous environment, its OpenMP benchmarks could
be compiled for CPU-only environment using make DEVICE=cpu.

3As OMPAR does not support offloading-specific OpenMP pragmas such as #pragma omp target data,
we did not consider them for our selection.

4For the pragma erasing, we used AutoParBench’s PragmaRemover tool: https://github.com/LLNL/
AutoParBench/tree/master/tools/PragmaRemover

3

https://github.com/LLNL/AutoParBench/tree/master/tools/PragmaRemover
https://github.com/LLNL/AutoParBench/tree/master/tools/PragmaRemover

Test setup TP FP TN FN Precision Recall Accuracy
OMPAR accuracy with ground-truth label 311 127 262 70 71% 81% 74%
AutoPar accuracy with ground-truth label 63 25 365 317 71% 17% 56%

ICPC accuracy with ground-truth label 95 11 285 379 90% 25% 62%
OMPAR accuracy with compile and run check 407 31 262 70 92% 85% 86%
AutoPar accuracy with compile and run check 24 25 365 356 49% 6% 50%

ICPC accuracy with compile and run check 68 5 312 385 93% 15% 49%
Table 1: Result of accuracy test on HeCBench (The best scores are in bold).

Threads C&R pass Compile fail Run fail Timeout
1 706 (91.68%) 53 0 11
4 710 (92.2%) 53 7 0
8 710 (92.2%) 53 7 0

16 707 (91.81%) 53 10 0
Table 2: Compile and run (C&R) test results
for OMPAR on 770 loops from HeCBench.

Tool Pass Failed
OMPAR 130 45
AutoPar 42 133

ICPC 72 17
Table 3: Compile and run test results for 175
OpenMP benchmarks from HeCBench (The
best scores are in bold).

that OMPAR was predicting the possibility of parallelizing several for loops that originally had no
OpenMP pragma (i.e., “negative” for loops). To confirm if OMPAR suggested loops can indeed be
parallelized (using the pragma it was suggesting), we decided to subject all such 438 loops (i.e., 311 +
127) to compile and run the test. To our surprise, we found that 96 of 127 false positives were indeed
not false positives - meaning 96 loops that did not have any OpenMP pragma as a ground truth could,
in fact, be parallelized using OMPAR-suggested OpenMP pragma and they also passed the compile
and run check. The remaining 31 false positives were indeed loops that could not be parallelized. In
this particular case, we consider compile and run tests to have higher credibility over the original
loop label to determine the potential of parallelizing a loop; a loop may not be parallelized for several
reasons such as the programmer missing out on the opportunity, potential performance improvement
with the parallelization, etc. Hence, in conclusion, OMPAR achieves 86% accuracy, 92% precision,
and 85% recall on the accuracy test.

We then evaluated AutoPar as well as ICPC using the same methodology. Both of them achieve high
precision (up to 93%) but low recall (25% or lower). Higher precision values of ICPC point to the
conservative nature of ICPC, while its low recall rate suggests a high number of false negatives,
indicating missed parallelization opportunities. AutoPar shows a similar behavior trait as ICPC,
though its precision and recall scores are not as good as ICPC. We have a detailed analysis of
AutoPar and ICPC in Appendix E.

Results on compile and run test (RQ2). We performed the compile and run test on all 770 loops from
OMPAR’s accuracy test results and found that 717 of those passed the compilation test, while 706-
710 of those 717 could pass the output verification test for different settings of OMP_NUM_THREADS.
Table 2 shows the detailed results. In summary, for OMPAR, around 92% of the 770 loops successfully
passed the compilation as well as the output verification test.

In order to account for different operating modes of OMPAR and AutoPar (i.e., parallelizing a loop
individually vs parallelizing the whole program), we also report the performance of both at the level
of OpenMP benchmarks (as opposed to individual loops) in HeCBench. Specifically, out of a total of
175 OMP benchmarks covered by 770 loops, OMPAR could successfully parallelize all the loops
from 130 benchmarks that also passed compile and run test (output verification). To be precise,
loops belonging to the remaining 45 benchmarks either could not be parallelized by OMPAR or
the parallelized loops failed compilation/run check. AutoPar, on the other hand, could parallelize
a total of 109 benchmarks, with 63 of those passing the compilation test and 42 passing the output
verification test. Table 3 shows the overall results for 175 OpenMP benchmarks from HeCBench.

Results on scale test. For scale test, we categorize the performance of every benchmark over baseline
into improvement (shown in green) or degradation (shown in red) and also different magnitudes
(1x-2x, 2x-5x, 5x-10x, and >10x), as detailed in Figure 3 in Appendix C. Furthermore, since these
tools are parallelizing different number of benchmarks (as observed in Figure 3a), we calculate
percentages of the benchmarks belonging to these 8 categories to allow easier comparison. Overall,
the results show that 1 the percentage of benchmarks degrading over baseline is considerably less
than those showing the improvement and 2 although AutoPar is able to achieve >10x improvement
for more % of benchmarks than OMPAR, OMPAR is showing similar performance, even though it is
parallelizing almost 3X more benchmarks than AutoPar.

4

Acknowledgments
This research was supported by the Israeli Council for Higher Education (CHE) via the Data Science
Research Center, Ben-Gurion University of the Negev, Israel; Intel Corporation (oneAPI CoE
program); Pazy Foundation; and the Lynn and William Frankel Center for Computer Science.
Computational support was provided by HPE HPC & AI Cloud, Intel Developer Cloud, and the
NegevHPC project.

References
[1] OpenMP Compilers and Tools. https://www.openmp.org/resources/

openmp-compilers-tools/. [Online].

[2] Mehdi Amini et al. Par4all: From convex array regions to heterogeneous computing. In IMPACT
2012: Second International Workshop on Polyhedral Compilation Techniques HiPEAC 2012,
2012.

[3] Le Chen, Nesreen K Ahmed, Akash Dutta, Arijit Bhattacharjee, Sixing Yu, Quazi Ishtiaque
Mahmud, Waqwoya Abebe, Hung Phan, Aishwarya Sarkar, Branden Butler, et al. Position
paper: The landscape and challenges of hpc research and llms. arXiv preprint arXiv:2402.02018,
2024.

[4] Le Chen, Arijit Bhattacharjee, Nesreen Ahmed, Niranjan Hasabnis, Gal Oren, Vy Vo, and Ali
Jannesari. Ompgpt: A generative pre-trained transformer model for openmp, 2024.

[5] Le Chen, Pei-Hung Lin, Tristan Vanderbruggen, Chunhua Liao, Murali Emani, and Bronis
De Supinski. Lm4hpc: Towards effective language model application in high-performance
computing. In International Workshop on OpenMP, pages 18–33. Springer, 2023.

[6] Le Chen, Quazi Ishtiaque Mahmud, Hung Phan, Nesreen Ahmed, and Ali Jannesari. Learning
to parallelize with openmp by augmented heterogeneous ast representation. Proceedings of
Machine Learning and Systems, 5, 2023.

[7] Intel corp. Automatic Parallelization with Intel Compilers. https://
www.intel.com/content/www/us/en/developer/articles/technical/
automatic-parallelization-with-intel-compilers.html, 2018.

[8] Intel Corporation. Intel c++ compiler user and reference guides (304968-022us).

[9] Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann, and Samuel
Midkiff. Cetus: A source-to-source compiler infrastructure for multicores. Computer, 42(12):36–
42, 2009.

[10] Paul Barton David McCandless, Tom Evans. The Rise and Rise
of A.I. Large Language Models (LLMs) & their associated bots like
ChatGPT. https://informationisbeautiful.net/visualizations/
the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/.
[Online].

[11] Michael Dever. AutoPar: automating the parallelization of functional programs. PhD thesis,
Dublin City University, 2015.

[12] Jacob Devlin et al. BERT: Pre-training of deep bidirectional transformers for language un-
derstanding. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics.

[13] LLVM Foundation. Polly - A Loop Optimizer in LLVM. https://polly.llvm.org/docs/
Architecture.html, 2023.

5

https://console.breckenridge.cloud/
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.openmp.org/resources/openmp-compilers-tools/
https://www.openmp.org/resources/openmp-compilers-tools/
https://www.intel.com/content/www/us/en/developer/articles/technical/automatic-parallelization-with-intel-compilers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/automatic-parallelization-with-intel-compilers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/automatic-parallelization-with-intel-compilers.html
https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
https://polly.llvm.org/docs/Architecture.html
https://polly.llvm.org/docs/Architecture.html

[14] William Godoy, Pedro Valero-Lara, Keita Teranishi, Prasanna Balaprakash, and Jeffrey Vetter.
Evaluation of OpenAI Codex for HPC Parallel Programming Models Kernel Generation. In
Proceedings of the 52nd International Conference on Parallel Processing Workshops, ICPP
Workshops ’23, pages 136–144, New York, NY, USA, September. Association for Computing
Machinery.

[15] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. Polly—performing polyhe-
dral optimizations on a low-level intermediate representation. Parallel Processing Letters,
22(04):1250010, 2012.

[16] Re’em Harel, Yuval Pinter, and Gal Oren. Learning to parallelize in a shared-memory environ-
ment with transformers. In SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2022.

[17] Re’em Harel, Yuval Pinter, and Gal Oren. Learning to parallelize in a shared-memory envi-
ronment with transformers. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming, pages 450–452, 2023.

[18] Re’em Harel, Idan Mosseri, Harel Levin, Lee-or Alon, Matan Rusanovsky, and Gal Oren.
Source-to-source parallelization compilers for scientific shared-memory multi-core and acceler-
ated multiprocessing: analysis, pitfalls, enhancement and potential. International Journal of
Parallel Programming, 48:1–31, 2020.

[19] Zheming Jin and Jeffrey S Vetter. A benchmark suite for improving performance portability of
the sycl programming model. In 2023 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 325–327. IEEE, 2023.

[20] Tal Kadosh, Niranjan Hasabnis, Timothy Mattson, Yuval Pinter, Gal Oren, et al. Pragformer:
Data-driven parallel source code classification with transformers. 2023.

[21] Tal Kadosh, Niranjan Hasabnis, Vy A Vo, Nadav Schneider, Neva Krien, Mihai Capota, Abdul
Wasay, Nesreen Ahmed, Ted Willke, Guy Tamir, et al. Domain-specific code language models:
Unraveling the potential for hpc codes and tasks. arXiv preprint arXiv:2312.13322, 2023.

[22] Tal Kadosh, Nadav Schneider, Niranjan Hasabnis, Timothy Mattson, Yuval Pinter, and Gal
Oren. Advising openmp parallelization via a graph-based approach with transformers. arXiv
preprint arXiv:2305.11999, 2023.

[23] Chris Lattner. Llvm and clang: Next generation compiler technology. In The BSD conference,
volume 5, 2008.

[24] Chunhua Liao, Daniel J Quinlan, Jeremiah J Willcock, and Thomas Panas. Semantic-aware
automatic parallelization of modern applications using high-level abstractions. International
Journal of Parallel Programming, 38:361–378, 2010.

[25] Yinhan Liu et al. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[26] Quazi Ishtiaque Mahmud, Ali TehraniJamsaz, Hung D Phan, Nesreen K Ahmed, and Ali
Jannesari. Autoparllm: Gnn-guided automatic code parallelization using large language models.
arXiv preprint arXiv:2310.04047, 2023.

[27] Timothy Mattson, Yun (Helen) He, and Alice Koniges. The OpenMP Common Core: Making
OpenMP Simple Again (Scientific and Engineering Computation). The MIT Press, 2019.

[28] Reed Milewicz, Peter Pirkelbauer, Prema Soundararajan, Hadia Ahmed, and Tony Skjellum.
Negative perceptions about the applicability of source-to-source compilers in hpc: A literature
review. In International Conference on High Performance Computing, pages 233–246. Springer,
2021.

[29] Idan Mosseri, Lee-Or Alon, Re’Em Harel, and Gal Oren. Compar: Optimized multi-compiler
for automatic openmp s2s parallelization. In OpenMP: Portable Multi-Level Parallelism on
Modern Systems: 16th International Workshop on OpenMP, IWOMP 2020, Austin, TX, USA,
September 22–24, 2020, Proceedings, page 247–262, Berlin, Heidelberg, 2020. Springer-Verlag.

6

[30] Daniel Nichols, Joshua H Davis, Zhaojun Xie, Arjun Rajaram, and Abhinav Bhatele. Can large
language models write parallel code? arXiv preprint arXiv:2401.12554, 2024.

[31] Daniel Nichols, Joshua H. Davis, Zhaojun Xie, Arjun Rajaram, and Abhinav Bhatele. Can large
language models write parallel code?, January 2024.

[32] Daniel Nichols, Aniruddha Marathe, Harshitha Menon, Todd Gamblin, and Abhinav Bhatele.
Modeling parallel programs using large language models. arXiv preprint arXiv:2306.17281,
2023.

[33] OpenAI. OpenAI ChatGPT. https://openai.com/blog/chatgpt. [Online].

[34] OpenMP Architecture Review Board. OpenMP application program interface version 4.5, 11
2015.

[35] Félix-Antoine Ouellet. Parallélisation Automatique de Programmes Scientifiques Pour Systèmes
Distribués. PhD thesis, Université de Sherbrooke, 2016.

[36] Soratouch Pornmaneerattanatri, Keichi Takahashi, Yutaro Kashiwa, Kohei Ichikawa, and Hajimu
Iida. Parallelizable loop detection using pre-trained transformer models for code understand-
ing. In International Conference on Parallel and Distributed Computing: Applications and
Technologies, pages 32–42. Springer, 2023.

[37] S Prema, R Jehadeesan, and BK Panigrahi. Identifying pitfalls in automatic parallelization
of nas parallel benchmarks. In Parallel Computing Technologies (PARCOMPTECH), 2017
National Conference on, pages 1–6. IEEE, 2017.

[38] S Prema, Rupesh Nasre, R Jehadeesan, and BK Panigrahi. A study on popular auto-
parallelization frameworks. Concurrency and Computation: Practice and Experience,
31(17):e5168, 2019.

[39] GNU Project. GNU Offloading and Multi-Processing Project (GOMP). https://gcc.gnu.
org/projects/gomp/#omp5.0, 2023.

[40] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

[41] Miguel Romero Rosas, Miguel Torres Sanchez, and Rudolf Eigenmann. Should ai optimize
your code? a comparative study of current large language models versus classical optimizing
compilers. arXiv preprint arXiv:2406.12146, 2024.

[42] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950, 2023.

[43] Yuanyuan Shen, Manman Peng, Shiling Wang, and Qiang Wu. Towards parallelism detection
of sequential programs with graph neural network. Future Generation Computer Systems,
125:515–525, 2021.

[44] Pedro Valero-Lara, Alexis Huante, Mustafa Al Lail, William F Godoy, Keita Teranishi, Prasanna
Balaprakash, and Jeffrey S Vetter. Comparing llama-2 and gpt-3 llms for hpc kernels generation.
arXiv preprint arXiv:2309.07103, 2023.

7

https://openai.com/blog/chatgpt
https://gcc.gnu.org/projects/gomp/#omp5.0
https://gcc.gnu.org/projects/gomp/#omp5.0

A Background

A.1 Formal approaches to automatic parallelization

To mitigate the difficulties of manual parallelization, various automatic parallelization tools have
been developed to assist programmers in automatically converting sequential programs into parallel
ones. These tools free programmers from the need to manually insert parallelization directives, thus
simplifying the software development process. These tools typically focus on loops, as loops are
where programs spend the majority of their execution time.

Broadly, auto-parallelization tools can be classified into two types: compilers and source-to-source
transformation tools.

Given that automatic parallelization is a form of program transformation, popular compilers like
GCC [39], LLVM [13], and ICC [7] also perform automatic parallelization. For instance, GCC has
supported automatic parallelization since version 4.3, released in 2012, and LLVM’s Polly [15, 35]
provides loop optimization and parallelization accessible through Clang [23]. These compilers
leverage existing program analysis infrastructure, such as data-flow analysis, to ensure the correctness
of the parallelization. They also use heuristics to prevent performance degradation by ensuring that
parallelized loops have sufficient iterations.

An alternative approach to compiler-based parallelization is the source-to-source (S2S) transformation.
S2S tools convert sequential code into parallel code while maintaining the original source code,
allowing subsequent compilation with any standard compiler. Examples of S2S tools include
AutoPar [11], Par4all [2], and Cetus [9], or a combination of those with ComPar [29]. S2S tools have
the advantage of keeping the source code clean and enabling the use of different compilers for further
optimization and deployment.

Despite their advantages, automatic parallelization tools face significant challenges [37, 28, 38]. One
major issue is the substantial manual effort required to develop and maintain these tools. They are
typically rule-based and rely on pattern matching, which necessitates continuous updates to keep
up with revisions to the OpenMP specification [1]. For instance, the latest version of GCC does not
fully support all features of OpenMP v5.0, and many S2S tools fail to incorporate newer OpenMP
capabilities, such as task-based parallelism and offloading kernels to devices. Moreover, automatic
parallelization tools can be overly strict, often failing to recognize opportunities for paralleliza-
tion [18]. This conservativeness, while ensuring correctness, can lead to missed opportunities where
parallelization could have been safely and beneficially applied. Additionally, when these tools do
perform parallelization, they can sometimes result in suboptimal performance scalability [18]. The
resulting parallelized code might not efficiently utilize the available computational resources, leading
to limited performance gains or even performance degradation in some cases.

A.1.1 A motivating case study of the limitations of formal auto-parallelizing tools
To concretely assess the limitations of these formal tools, we decided to conduct a case study of two
state-of-the-art auto-parallelization tools in their ability to parallelize serial programs. Specifically, we
chose AutoPar and ICPC. AutoPar [24] is a state-of-the-art static source-to-source-based automatic
parallelization tool. ICPC is the Intel C++ compiler, which provides advanced auto-parallelization
capabilities as part of high-performance computing tools. ICPC [8] performs automatic parallelization
at compile-time, leveraging both static analysis and dynamic profiling data to optimize code for
modern multi-core architectures. Unlike AutoPar, which focuses on OpenMP directive insertion,
ICPC integrates more advanced optimizations such as vectorization and memory access improvements,
targeting low-level hardware features

Test dataset. As these tools would have been evaluated on existing serial-code benchmarks, we
decided to generate a synthetic benchmark of serial code. Specifically, we decided to leverage
ParEval [31], the latest work that has developed a benchmark to evaluate the ability of LLMs to
generate parallel programs. Specifically, ParEval contains LLM prompts that represent 60 different
coding problems related to scientific and parallel computing, with each problem, solved using
programs written in 7 different parallel programming languages (such as CUDA, OpenMP, etc.)
Moreover, every program has pre-defined test inputs as well as expected outputs. We collected 60
OpenMP-based programs generated by GPT-3.5-turbo and converted these parallel programs into

8

serial ones by removing all OpenMP pragmas5. We found that these programs were using the C++17
standard.

Evaluation methodology. Both AutoPar and ICPC operate on complete programs (as against a single
for loop) for automatic parallelization. Consequently, we applied both tools to parallelize every
serial program from the test set, attempted to compile generated OpenMP-parallelized programs, run
with the test inputs (if the compilation was successful), and compared their output with the expected
output.

Findings. We found that ICPC could parallelize 2 of these 60 programs and 5 for loops in total.
Similar to ICPC, AutoPar was able to parallelize 2 programs and 2 loops in total. When subjected to
compile and run tests, ICPC-parallelized programs timed out, while AutoPar-parallelized programs
encountered errors (see elaboration in Appendix D). We found that one of the reasons for the inability
of these tools to parallelize input programs was possibly their incomplete support for the C++17
standard that is used by the input programs. We believe this limitation points to the need for manual
efforts to support these tools.

We present three concrete examples of Autopar’s incorrect parallelization in Figure 2. Specifically,
the first two examples are of incorrect parallelization (false positive) — for loops that cannot be
parallelized as per OpenMP specification — while the third example is a missed parallelization
opportunity (false negative). In particular, the first two examples contain for loops that have a return
statement, and the behavior of the loops is strictly based on the order of loop iterations. Parallelizing
such a loop provably changes the semantics of the loop from its serial version. The third example
contains a for loop that can be parallelized with OpenMP’s reduction(+:count) clause, but
AutoPar missed the parallelization opportunity. The missed opportunity could be because of non-
affine constructs (i.e., A [i * n + j]) in the loop body that AutoPar could not analyze statically.
To summarize, we found that existing formal tools for auto-parallelization suffer from several
limitations. Later in the evaluation, we present several more examples of incorrect parallelizations by
AutoPar and ICPC.

s i z e _ t f i n d L a s t S h o r t B o o k (
c o n s t c l a s s s t d : : v e c t o r <Book > ,
s t d : : a l l o c a t o r <Book>> &books) {

#pragma omp parallel for
f o r (s i z e _ t i = books . s i z e () ;

i >= ((u n s i g n e d long) 0) + 1 ;
i += −1) {

i f (books [(i − 1)] . pages < 100) {
r e t u r n i − 1 ; } }

/ / I f no book wi th pages < 100 i s
/ / found , r e t u r n an a p p r o p r i a t e
/ / v a l u e (e . g . , books . s i z e ()) .
r e t u r n books . s i z e () ;
}

Listing 1: Example 1

s i z e _ t f i n d F i r s t E v e n (
c o n s t c l a s s s t d : : v e c t o r < i n t ,
s t d : : a l l o c a t o r < i n t >> &x) {

#pragma omp parallel for
f o r (s i z e _ t i = 0 ;

i <= x . s i z e () − 1 ;
i += 1) {

i f (x [i] % 2 == 0) {
/ / Check i f c u r r e n t e l e m e n t
/ / i s even . Re tu r n t h e i n d e x
/ / i f found
r e t u r n i ; } }

/ / Re tu r n −1 o t h e r w i s e .
r e t u r n (− 1) ; }

Listing 2: Example 2

i n t edgeCount (
s t d : : v e c t o r < i n t > c o n s t& A,
s i z e _ t N) {

i n t c o u n t = 0 ;
s i z e _ t i = 0 , j = 0 ;

#pragma omp parallel for
reduction(+:count)

f o r (i = 0 ; i < N; ++ i) {
f o r (j = 0 ; j < N; ++ j) {

i f (A[i * N + j] == 1) {
pragma omp c r i t i c a l
c o u n t ++;}}}

r e t u r n c o u n t ;
}

Listing 3: Example 3

Figure 2: Examples of incorrect parallelization by AutoPar: The first two examples show for loops
were parallelized by AutoPar but the parallelization changed the loop semantics. The last example
shows the loop that can be parallelized, but AutoPar missed the parallelization opportunity.

A.2 Leveraging LLMs for parallel program generation
The emergence of LLMs, particularly those built on transformer architectures like the GPT (Generative
Pre-trained Transformer) series [10], has sparked a revolution in NLP. These models have exhibited
exceptional prowess in comprehending and producing human language [12, 25, 40]. Leveraging the
inherent similarities between code and natural language, researchers have extended these capabilities
to the realm of programming, paving the way for automating various software development tasks,
including parallelization.

AI-based tools for automatic parallelization manifest in diverse forms, each offering a distinct ap-
proach and emphasis. OpenMP-specific tools address the challenge of OpenMP parallelization,
scrutinizing serial code and proposing suitable OpenMP pragmas. Examples encompass Prag-
Former [16], OMPIFY [22], Graph2Par [6], HPCoder [21], and AutoParLLM [26]. On the other

5For the pragma erasing, we used AutoParBench’s PragmaRemover tool: https://github.com/LLNL/
AutoParBench/tree/master/tools/PragmaRemover

9

https://github.com/LLNL/AutoParBench/tree/master/tools/PragmaRemover
https://github.com/LLNL/AutoParBench/tree/master/tools/PragmaRemover

Authors Month Year Model Task Usage Dataset Ref
Harel April 2022 PragFormer Classification Fine-tuning OpenOMP

dataset
[17,
20]

Chen May 2023 Graph2Par Classification Fine-tuning OMPSerial
dataset

[6]

Kadosh May 2023 OMPIFY Classification Fine-tuning HPCorpus dataset [22]
Chen June 2023 LM4HPC Classification Inference OMP4Par dataset [5]
Godoy June 2023 Codex Generation Inference Numerical Ker-

nels
[14]

Nichols June 2023 HPC-Coder Generation Fine-tuning HPC-Coder
dataset

[32]

Valero-
Lara

September 2023 Llama-2, GPT-3 Generation Inference Numerical Ker-
nels

[44]

Mahmud October 2023 AutoParLLM Classification Fine-tuning,
Inference

OMPSerial
dataset

[26]

Pornman’ November 2023 CodeT5-FT Classification Fine-tuning BigQuery public
dataset

[36]

Kadosh December 2023 MONOCODER Generation Pre-training HPCorpus dataset [21]
Nichols January 2024 CodeLlama, StarCoder,

GPT-3.5, GPT-4
Generation Inference ParEval [30]

Chen January 2024 OMPGPT Generation Pre-
training,
Fine-tuning

HPCorpus dataset [4]

Rosas June 2024 GPT-4, CodeLlama-
70B

Generation Inference NAS, PolyBench [41]

Table 4: Comparison of LLM-based models for OpenMP code, showing their usage (Inference,
Fine-tuning, Pre-training + Fine-tuning) and corresponding training data. Almost all of the models
use common ML metrics for success, especially OpenMP pragma string-based comparison.

hand, pre-trained HPC-oriented models such as MONOCODER [21] and OMP-GPT [3] are initially
trained on expansive datasets before being fine-tuned for OpenMP-related tasks, capitalizing on their
expansive comprehension of code structures and parallelization principles. We capture comparative
details of these AI-based automatic parallelization approaches in Table 4, which highlights the diverse
methodologies used in the field. These models differ not only in their underlying architectures but
also in the nature of the tasks they are designed for and the datasets they leverage.

Meanwhile, general-purpose LLMs such as GPT-4 [33] and CodeLLaMa [42] are highly versatile
and capable of addressing a wide range of programming tasks, including OpenMP parallelization.
However, they lack specialized training in parallel programming paradigms. Due to the limited
exposure to these paradigms in their training data, these models often struggle with key parallel
programming challenges, such as reasoning about data distribution, managing race conditions, and
implementing complex parallel algorithms [30].

Performance evaluations have been increasingly demonstrating the superiority of AI-based ap-
proaches over traditional methods. Notably, PragFormer has surpassed the source-to-source tool
ComPar [29] in discerning parallelization potential. Similarly, AI-based tools have been advancing
rapidly. Graph2Par has exhibited greater precision in predicting applicable OpenMP clauses com-
pared to PragFormer. Moreover, both OMPIFY and PragFormer have outperformed ChatGPT in
discerning the parallelization potential of loops.

However, despite these advancements, a significant gap remains in matching the capabilities of
automatic parallelization compilers. Unlike previous AI-specific metrics that primarily focused
on next-token prediction accuracy and comparison to ground truth, automatic parallelization tools
are traditionally evaluated based on machine performance metrics such as runtime, scalability, and
accuracy of computation results. OMPAR addresses this challenge by validating performance using
HPC-centric methodologies as recommended by ParEval [30].

A.2.1 Limitations of LLMs in auto-parallelization
We have covered comparative analysis of existing parallelization-specific AI models in Table 4. We
now talk briefly about the limitations of LLMs in automatic parallelization. Several recent papers [30]
have systematically evaluated ability of LLMs in generating parallel code. In particular, authors of
ParEval [30] have presented a systematic analysis of ability of various popular LLMs, including GPT-
4, in auto-parallelization. As such, we quote the findings from these studies to summarize: “LLMs are

10

significantly worse at generating parallel code than they are at generating serial code”. Moreover,
they further comment that “the poor performance of LLMs on ParEval benchmark indicates that
further efforts are necessary to improve the ability of LLMs to model parallel code and/or create new
LLMs that are specialized for parallel code generation.”

One major limitation contributing to the poor performance of current LLMs in parallelization tasks
is that these models are primarily trained on raw source code, without leveraging the deeper code
representations used by compilers, such as Abstract Syntax Trees (AST), Control Flow Graphs (CFG),
and Data Flow Graphs (DFG). While source code provides surface-level syntax and semantics, it lacks
the structural insights necessary for complex tasks like parallelization, which require understanding
dependencies, data flow, and control flow. Compiler-level representations like ASTs capture the
hierarchical structure of code, while DFGs model how data moves through variables and computations,
both of which are crucial for identifying independent tasks that can be parallelized. The absence of
these representations limits the ability of LLMs to detect parallelization opportunities, manage data
dependencies, and ensure race condition-free execution, making them less effective in generating
optimized parallel code.

B OMPAR components
B.1 OMPIFY

The first major component of OMPAR is OMPIFY. OMPIFY is an encoder-only transformer model
trained on for loops in C and C++ to classify whether OpenMP is needed or applicable. Specifically,
it was trained on approximately 54K for loops, with about half of them containing OpenMP and
the rest not. The OMPIFY pipeline operates as follows: First, it generates the given code’s data
flow graph (DFG). Then, the model is fed with multiple code modalities, including the DFG and
the plain code. The model returns a binary classification for the detection task. Results demonstrate
that OMPIFY outperforms existing approaches, such as the general-purpose and popular ChatGPT
(GPT-3.5) and the targeted PragFormer models, in terms of F1 score and accuracy. Specifically,
OMPIFY achieves up to 90% accuracy on commonly used OpenMP benchmark tests such as NAS,
SPEC, and PolyBench.

B.2 MONOCODER-OMP
The second major component of OMPAR is the fine-tuned version of MONOCODER, MONOCODER-
OMP. MONOCODER is a decoder-only model initially trained on corpora of HPC-programming lan-
guages. We fine-tuned it on approximately 25K for loops so that for a given for loop, MONOCODER
generates the corresponding OpenMP pragma, particularly the "#pragma omp for" along with private
and reduction clauses. For evaluation, MONOCODER was compared to the general-purpose ChatGPT
(GPT-3.5) on the task of OpenMP pragma generation. MONOCODER significantly outperformed
ChatGPT in both predicting the correct clauses and using the relevant variables inside the clauses.

Dataset. To create a dataset for the automatic OpenMP parallelization generation task, we curated a
subcorpus of HPCORPUS named HPCorpusOMP. This subcorpus specifically includes all the for
loops that have either #omp parallel for pragma that distributes the workload across multiple
CPU cores or offloads tasks to a team of threads for GPU execution using #omp target teams
distribute. The dataset also includes OpenMP pragmas containing private6 and reduction
clauses. It is important to note that we excluded the context of the loops to maintain focus on the
loop-specific information. The details of the dataset in terms of these clauses are present in Table 5.

MONOCODER-OMP training. We fine-tuned the pretrained MONOCODER model to the OpenMP
pragma generation task using the Huggingface transformers library on 2 NVIDIA V100 32GB
GPUs at fp32 precision. Fine-tuning used the AdamW optimizer with a linear warmup over the
first 100 steps, followed by a linear decay over the remaining steps. Fine-tuning samples also had a
maximum length of 2048 tokens, trained in 16 sample minibatches (8 per GPU). The fine-tuning was
run for 4 epochs at the learning rate of 0.000016.

Evaluation setup. In the fine-tuning of MONOCODER on the HPCorpusOMP subcorpus, the task
was set as a generation task in which the complete for loop is input to the model, and the expected

6To avoid the loss of crucial details, we designed HPCorpusOMP such that the private clause encompasses
instances of both firstprivate and lastprivate, as both of these clauses serve the purpose of creating a
private instance of variables for each thread.

11

generated output was the pragma and its associated variables. We then evaluated MONOCODER-OMP
on a test set of HPCorpusOMP. For comparison, we assessed GPT-3.5 turbo in a zero-shot manner.
Specifically, we supplied a prompt instructing it to “Generate the optimal OpenMP pragma for the
provided code” when presented with the for loop.

private reduction target parallel for
C 3,526 713 145 8,764

C++ 2,122 1,424 345 18,151
Table 5: OpenMP clause breakdown in HPCorpusOMP.

C OMPAR scale test results on HeCBench

1 4 8 16
0

50

100

150 1
2
8

1
3
0

1
3
0

1
2
7

4
0

4
0

4
0

3
8

7
2

7
2

7
2

7
2

OMP_NUM_THREADS

OMPAR AutoPar ICPC

(a) Number of benchmarks completing the scale
test for different automatic parallelization tools

1 4 8 16
0

20

40

60

80

100

OMP_NUM_THREADS

1x-2x 2x-5x 5x-10x >10x
1x-2x 2x-5x 5x-10x >10x

(b) % of OMPAR-parallel benchmarks (Y-axis)
with improvements (in Green) and degradations
(in Red) over baseline

1 4 8 16
0

20

40

60

80

100

OMP_NUM_THREADS

1x-2x 2x-5x 5x-10x >10x
1x-2x 2x-5x 5x-10x >10x

(c) % of AutoPar-parallel benchmarks (Y-axis)
with improvements (in Green) and degradations
(in Red) over baseline

1 4 8 16
0

20

40

60

80

100

OMP_NUM_THREADS

1x-2x 2x-5x 5x-10x >10x
1x-2x 2x-5x 5x-10x >10x

(d) % of ICPC-parallel benchmarks (Y-axis) with
improvements (in Green) and degradations (in Red)
over baseline

Figure 3: Scale test performance of OMPAR-, AutoPar-, and ICPC-parallelized OpenMP benchmarks
from HeCBench.

D Evaluating OMPAR on ParEval dataset
Since we presented the performance of AutoPar and ICPC on the ParEval dataset in the motivation
section (subsubsection A.1.1), we decided to evaluate OMPAR on the ParEval dataset as well. Notice
that ParEval is a much smaller dataset than HeCBench, and OMPAR has outperformed both AutoPar
and ICPC on HeCBench. But we are presenting ParEval results for the sake of completeness and
curious readers. As the performance of AutoPar and ICPC on ParEval was poor (parallelized only 2
benchmarks out of 6), we did not evaluate them on accuracy and scale tests.

ParEval OpenMP loop dataset. As we are only interested in obtaining OpenMP programs, we fed
ParEval’s 60 coding problems to GPT-3.5 and collected the output OpenMP programs. ParEval also

12

comes with a set of compilation recipes and test inputs to evaluate if LLM-generated programs are
syntactically- and semantically-correct. Using these recipes and inputs, we found that 32 programs of
those 60 passed the compilation and runtime check. We then used these 32 OpenMP programs to
extract 55 for loops, 37 of which had OpenMP parallel for pragma (“positive” loops) while the
remaining 18 had no OpenMP pragma (“negative” loops). We call the dataset of 55 loops as ParEval
OpenMP dataset.

Evaluation methodology. We used the dataset of 55 for loops to evaluate OMPAR on the accuracy
test and the compile, run, and scale test.

Results on accuracy test. Figure 4 shows the performance of OMPAR on the accuracy test when
subjected to 55 loops from the ParEval OpenMP dataset. As can be seen in the first row of the table,
we found that the accuracy was relatively low (67%). The reason is also obvious from the table —
we found that OMPAR was suggesting that all 18 “negative” for loops can be parallelized using
OpenMP pragma. To confirm if this suggestion was indeed correct, we decided to subject OMPAR
to compile and run the test. Similar to the observations made from the evaluation on HeCBench,
we found that 11 of those 18 “negative” loops can indeed be parallelized using suggested OpenMP
pragma, and more importantly, the suggested pragma and the loop when inserted in the program
can compile correctly and also pass output verification check. In other words, 11 of those 18 false
positives are actually true positives. Consequently, the accuracy of OMPAR improved to 87% (as
shown in the second row of the table).

Results of scale test. Figure 5 shows the performance of OMPAR on the scale test with ParEval
OpenMP loop dataset. For the scale test, we insert the loop along with its OMPAR suggested pragma
in the original pragma and run the program with its default inputs. More importantly, we vary the
number of threads OMP_NUM_THREADS from 1, 4, 8, and 16 while running those programs. The X-axis
in the figure represents every loop from the dataset, while the Y-axis shows the speedup obtained
by its corresponding program against the baseline of running the same program with a single thread.
Overall, as can be seen, as the number of threads is increased from 4 to 16, the performance of the
programs goes up as well – indicating that OMPAR suggested pragmas scale well with different
number of threads.

Test setup TP FP TN FN P R Acc
With GT la-
bel

37 18 0 0 67% 100% 67%

With C&R
check

48 7 0 0 87% 100% 87%

Figure 4: OMPAR’s performance on the
accuracy test on the ParEval OpenMP
dataset. (TP=True Positive, FP=False Pos-
itive, TN=True Negative, FN=False Negative,
P=Precision, R=Recall, Acc=Accuracy)

1 4 8 12 16 20 24 28 32 36 40 44 48
0

50

100

150

Loop numberSp
ee

du
p

ov
er

nt
hr

ea
ds

=1
(b

as
el

in
e)

nthreads=4 nthreads=8 nthreads=16

Figure 5: Performance of OMPAR on the
scale test with 48 True Positives from ParEval
OpenMP dataset

E Result analysis: What were some of AutoPar failures?

Given that AutoPar is a rule-based, state-of-the-art source-to-source transformation tool for automatic
parallelization, it is natural to expect it to parallelize most, if not all, of the possible for loops. Our
experimental evaluation on HeCBench revealed otherwise. Hence, we decided to investigate some of
the cases where AutoPar failed to parallelize or incorrectly parallelized a loop. Below we present the
most frequent failures that we observed in our experiments.

13

E.0.1 Cases of incorrect parallelization
AutoPar parallelized code failed to compile, prompting further analysis for examination. Upon
investigation, we found that AutoPar had performed several erroneous code transformations.

(1) Applies parallelization (i.e., adds #pragma) to non-canonical loops. Section 2.6 of OpenMP-
v4.5 [34] specifies a particular form of loops (called canonical form) that can be parallelized using
OpenMP. All other loop forms are then non-canonical forms.

// AutoPar suggested OpenMP pragma
#pragma omp parallel for private (i)
for (i = 0;

((long) i) <= dim_cpu.space_elem - 1;
i = i + 1) {

rv_cpu[i].v = ((rand() % 10 + 1) / 10.0);
...}

We found that AutoPar suggested OpenMP parallel pragma for non-canonical loops also. For example,
a loop shown above (obtained from HeCBench’s lavaMD-omp) contains a typecasting expression
involving the loop iteration variable, and such an expression is considered non-canonical by OpenMP.
In spite of this, AutoPar parallelized the particular loop, thus leading to a compiler error.

(2) Applies parallelization to loops with return statements. OpenMP specifications do not allow the
parallelization of loops containing a return statement in its body. This constraint ensures that all
threads synchronize before exiting the code. In spite of this restriction, AutoPar suggested OpenMP
parallelization pragma for such a loop as shown in the example obtained from HeCBench’s grep-omp
benchmark.

inline int ispmatch (:: List *l) {
int i;
// AutoPar suggested OpenMP pragma
#pragma omp parallel for private (i)
for (i = 0; i <= l->n-1; i += 1) {

if (l->s[i]->c == Match)
return 1;}

return 0;}

(3) Applies privatization and reduction to the same variable in OpenMP parallelization pragma.
Privatization and reduction of the same variable are not allowed in OpenMP because private and
reduction are conflicting directives for the same variable. In spite of this rule, AutoPar suggested
OpenMP pragma for a loop (example below from page-rank-omp benchmark of HeCBench) that
violated the rule.

// AutoPar suggested OpenMP pragma
#pragma omp parallel for \

private (nb_links ,i,j) reduction (+: nb_links)
for (i = 0; i <= n - 1; i += 1) {

#pragma omp parallel for \
private (j) reduction (+: nb_links)

for (j = 0; j <= n - 1; j += 1) {
nb_links += pages[i * n + j];}}

E.0.2 Cases of missed parallelization opportunities
Performance analysis of AutoPar-parallelized programs revealed that AutoPar had missed paralleliza-
tion opportunities in several HeCBench benchmarks.

One commonly occurring theme among the loops that AutoPar missed was that many of them
contained function calls. For instance, in the code shown below (obtained from ace-omp benchmark)
AutoPar did not parallelize the loop as the loop body contains multiple function calls. Specifically,
for loops containing function calls, AutoPar assumes that the function call might modify shared
data, or the callee may contain loops, or the call may be data-dependent. AutoPar does not perform
inter-procedural analysis or optimizations, such as function inlining, which could have alleviated this
limitation. AutoPar missed parallelization opportunities at multiple places within the same benchmark
for this exact same reason.

for (int ix = 0; ix <= 99; ix += 1) {
for (int iy = 0; iy <= 99; iy += 1) {

for (int iz = 0; iz <= 99; iz += 1) {
if (ix < 100 - 1 && iy < 100 - 1 &&

iz < 100 - 1 && ix > 0 && iy > 0 &&
iz > 0) {

double px =
GradientX(phi ,dx,dy,dz,ix ,iy,iz);

14

double py =
GradientY(phi ,dx,dy,dz,ix ,iy,iz);

double pz =
GradientZ(phi ,dx,dy,dz,ix ,iy,iz);

double sqGphi = px * px + py * py +
pz * pz;

double c = 16.0 * W0 * epsilon;
double w = Wn(px,py,pz ,epsilon ,W0);
double w2 = w * w;
Fx[ix][iy][iz] = w2 * px +

sqGphi * w * c * dFunc(px , py, pz);
Fy[ix][iy][iz] = w2 * py +

sqGphi * w * c * dFunc(py , pz, px);
Fz[ix][iy][iz] = w2 * pz +

sqGphi * w * c * dFunc(pz , px, py);
} else {

Fx[ix][iy][iz] = 0.0;
Fy[ix][iy][iz] = 0.0;
Fz[ix][iy][iz] = 0.0;}}}}

In summary, we found that even AutoPar, which is a state-of-the-art source-to-source transformation
tool based on a formal, rule-based approach, either missed parallelization opportunities or suggested
incorrect pragmas. We believe this behavior can be attributed to missing newer rules (e.g., limited
support for OpenMP-4.5) or conservative assumptions. Our experimental results reveal that AI-based
approaches, such as ours, can mitigate these limitations, by learning from vast amounts of code and
identifying parallelization patterns that rule-based systems may overlook.

15

	Introduction
	OMPar: LLM-based source-to-source parallelization compiler
	Experimental evaluation
	Experimental setup
	Results

	Background
	Formal approaches to automatic parallelization
	A motivating case study of the limitations of formal auto-parallelizing tools

	Leveraging LLMs for parallel program generation
	Limitations of LLMs in auto-parallelization

	OMPar components
	OMPify
	MonoCoder-OMP

	OMPar scale test results on HeCBench
	Evaluating OMPar on ParEval dataset
	Result analysis: What were some of AutoPar failures?
	Cases of incorrect parallelization
	Cases of missed parallelization opportunities

