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Abstract

Recent deep learning workloads exhibit dynamic characteristics, leading to the
rising adoption of dynamic shape compilers. These compilers can generate efficient
kernels for dynamic shape graphs characterized by a fixed graph topology and
uncertain tensor shapes. However, memory optimization, although particularly
crucial in this large model era, remains relatively underexplored for dynamic shape
graphs. The fundamental challenge lies in the lack of precise tensor shapes which
are essential in conventional methods such as operation scheduling(op scheduling)
and rematerialization. To address this challenge, we propose op scheduling and re-
materialization approaches based on symbolic shapes and developed BladeDISC++.
Besides, since rematerialization decisions cannot be made solely at compile time
when tensor shapes are unknown, BladeDISC++ employs a compilation-runtime
combined strategy to optimally address shape dynamics. Evaluations indicate
that BladeDISC++ effectively reduces memory usage for dynamic shape graphs,
achieving memory consumption comparable to optimizations using precise shapes,
thereby promoting the broader adoption of dynamic shape compilers.

1 Introduction

Dynamic shape compilers are becoming increasingly prevalent due to their ability to optimize
deep learning workloads with dynamic characteristics. While systems like TorchInductor[14] and
Modular[13] have made significant strides in kernel generation, memory optimization still remains
underexplored. Conventional methods like op scheduling[9, 15, 2] and rematerialization[6, 3, 7, 10, 5]
(recomputation and offloading included) rely on exact tensor shape to assess the memory impact of
ops or rematerialization subgraphs, and make optimization decisions at compile time. However, in
the absence of shape values, these methods become unfeasible.

BladeDISC++, built upon a dynamic shape compiler BladeDISC[16][17][11], leverages symbolic
shapes to tackle the above challenges. With symbolic shapes, BladeDISC++ is able to derive
comparative memory impacts of different op sequences and find the optimum scheduling order. For
rematerialization, symbolic shapes are utilized to search for optimum recomputation subgraph at
compile time and assist to conduct final rematerialization decisions at runtime.

Our evaluations demonstrate that BladeDISC++ can effectively reduce memory usage for training with
dynamic shape graphs compared to BladeDISC. Additionally, BladeDISC++ achieves comparable
memory consumption with static shape training while alleviating the overhead of recompilation and
tensor padding.
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2 Memory optimizations based on symbolic shapes

As shown in Figure 1, given a dynamic shape computation graph, BladeDISC++ first performs sym-
bolic shape analysis to create a global symbolic shape graph that describes the algebraic relationships
between shape symbols(in section 2.1). Then, the symbolic shape graph, together with the computa-
tion graph, undergoes optimization passes including op fusion, op scheduling, and rematerialization
for memory optimization.

As BladeDISC’s prior work [16][17] has tackled the op fusion problem, this paper focuses on op
scheduling (in section 2.2) and rematerialization (in section 2.3). In particular, with the symbolic
shape graph instead of exact tensor shape, BladeDISC++ can still compare memory impacts of
different op sequences, and determine whether a recomputation subgraph would benefit memory
consumption. Additionally, because a dynamic shape graph might have varying memory footprints
across different runs, it is impractical to make rematerialization decisions, such as how much memory
to evict, solely at compile time. Therefore, BladeDISC++ explores all rematerialization candidates
and searches their corresponding regeneration subgraphs and conduct final rematerialization decisions
at runtime.

Figure 1: Memory optimizations based on symbolic shapes in BladeDISC++

2.1 Symbolic shape graph analysis

BladeDISC++ systematically analyzes and extracts shape information from the semantics of each op
within the dynamic shape computation graph. It then constructs a global symbolic shape graph to
represent the algebraic relationships between shape dimensions through shape value extraction and
input-output shape inference.

func.func @main (%arg0: tensor <?,[@S0]>, %arg1: tensor <12x11008 >) {
%1 = broadcast (%arg1) -> tensor <4096x?, [@C4096 , @S0]>
%2 = dynamic_reshape (%arg0 , %new_shape) -> tensor <?x12 ,[@S1 , @C12]>
// The last consumer of %2
%3 = dot(%2, %arg1) -> tensor <?x11008 , [@S1 , @C11008]>
// The last consumer of %3
%4 = reduce (%3) -> tensor <?, [@S1]>
%1084 = broadcast (%4) -> tensor <11008x?, [@C11008 , @S1]>
%1085 = broadcast (%arg0) -> tensor <1024x?, [@C1024 , @S0]>

}
func.func @symbolic_shape_graph () {

SymbolicDim @S0
SymbolicDim @S1
@S0 = Mul @C12 , @S1

}

Listing 1: Example of a dynamic shape graph and its symbolic shape graph

As illustrated in Listing 1, BladeDISC++ introduces a SymbolicDim op to define a symbolic value,
bond to a dimension of a tensor shape in the dynamic shape graph as op attributes, exemplified by ten-
sor<?x?, [@S0, @S1]>. For instance, the equation @S0 = 12 * @S1 stems from DynamicReshapeOp
that its input and output tensor have the same number of elements.
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Comparison between memory sizes of tensors is critical to op scheduling and rematerialization.
BladeDISC++ introduces SymbolicExpr to express algebraic representations of symbolic dimensions,
allowing for comparative evaluations with a best-effort strategy. For example, the element number of
tensor %1084 and %1085 can be represented by SymbolicExprs expr1 = 11008 * @S1 and expr2 =
1024 * @S0 respectively. As it’s already derived from DynamicReshapeOp that @S0 = 12 * @S1,
exp1 can be simplified to 132096 * @S0, thus BladeDISC++ can infer that expr1 is less than expr2.

2.2 Operation scheduling

Figure 2: OpScheduler algorithm main loop

Op scheduling tries to find a memory-efficient
op sequence from the original computation
graph. Existing scheduling algorithms[8] often
traverse the computation graph and select an op
from a ReadySet (including ops whose predeces-
sors have already been scheduled) at each step.
The selection is mainly based on comparing dif-
ferent ops’ memory impact, which is determined
by the difference between bytes freed and allo-
cated after scheduling a specific op. BladeDISC++ adopts a similar methodology, emphasizing the
computation and comparison of memory impact among different ops with the absence of exact tensor
shapes in dynamic shape graphs. Specifically, in BladeDISC++, the memory impact for each op is
calculated using symbolic shapes and thus expressed as a SymbolicExpr. These SymbolicExprs are
then compared to each other with the help of symbolic shape graph.

In Listing 1, for example, the DynamicReshapeOp and DotOp appear in the ReadySet at a specific
step. DotOp, as the last consumer of %2 and producer of %3, has a memory impact of 10996 *
@S1 due to the allocation for %3 and deallocation for %2. The DynamicReshapeOp’s memory
impact, on the other hand, is 4096 * @S0 because scheduling it only involves allocation for %1. To
compare two SymbolicExprs containing different sets of symbols, we first simplify the SymbolicExpr
of DynamicReshapeOp’s memory impact based on @S1 to 49152 * @S1 with the same procedure
described in 2.1, then it can be determined that the DynamicReshapeOp has a higher memory impact
than the DotOp.

When it’s unfeasible to compare two memory impact SymbolicExprs, we resort to a commonly used
strategy: selecting the op that results in smaller overall tensor lifetimes based on the graph topology.

2.3 Rematerialization

Conventional rematerialization methods[6, 10, 3]involve algorithms to determine which tensors to be
evicted earlier to alleviate memory pressure, as well as how to perform subsequent regeneration, either
through reloading or recomputation. These methods also include a search process to identify optimal
recomputation subgraphs by evaluating their memory impacts. Notably, tensor rematerialization
may negatively affect end-to-end performance, so it should only be employed when the graph’s
execution risks exceeding the memory limit. However, a dynamic shape graph, with undetermined
tensor shapes, can exhibit varying peak memory usage across different runs. Some runs may not need
rematerialization since they remain within memory limits, while others may need. It’s impractical to
make all decisions solely during compilation. Furthermore, the lack of exact shapes raises challenges
in assessing the memory impacts of potential recomputation subgraphs.

To address these issues, BladeDISC++ utilizes a combined compilation-runtime strategy based on
symbolic shapes to best manage shape dynamics across graph runs. During compilation, it explores
all potential rematerialization candidates and identifies their corresponding regeneration subgraphs,
which are then inserted into the original computation graph as different execution branches. Final
decisions regarding which tensor to evict and the associated regeneration method are made at runtime.

During compile time, as illustrated in Figure 1, BladeDISC++ inserts a Remat::EvictOp after each
op, checking if any active tensors at that point need to be evicted to alleviate memory pressure. For
each candidate tensor, regeneration subgraphs, including those for reload and recomputation, are also
generated. While reloading only involves a host-to-device (H2D) instruction and is memory-neutral,
searching for recomputation subgraphs requires careful evaluation since sub-optimal choices may
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even increase peak memory usage. BladeDISC++ uses a standard search process but assesses memory
impact of potential subgraphs based on SymbolicExpr.

Taking recomputation subgraph searching for %4 in Listing 1 as an example. Starting from the
ReduceOp, BladeDISC++ determines the memory impacts: -11007 * @S1 for just the ReduceOp,
-11 * @S1 with the addition of the DotOp, and 1 * @S1 when the DynamicReshapeOp is included.
Although exact shape values are unknown, BladeDISC++ can still ascertain that the last recomputation
subgraph is memory-efficient, whereas the others are not.

Then, BladeDISC++ inserts Remat::RegenerateOps, along with the corresponding regeneration
subgraphs (both reload and recompute), before each candidate tensor’s subsequent consumers. The
Remat::RegenerateOp checks whether a candidate tensor is evicted and its regeneration method,

At runtime, BladeDISC++ monitors memory usage throughout kernel execution. Each time an
EvictOp is triggered, BladeDISC++ checks the current memory usage and performs an on-the-fly
analysis of all candidate tensors provided by the EvictOp when the memory limit is about to be
surpassed. The final decisions on which tensor from the above candidates needs to be evicted as well
as the corresponding regeneration method are made by considering factors such as memory savings
and end-to-end performance impact, following a similar approach as outlined in [10]. Subsequent
Remat::RegenerateOps then query these decisions and determine which regeneration subgraphs need
to be triggered.

3 Evaluation

For our evaluation, we conducted experiments on the supervised fine-tuning of Llama-2-1b, a tailored
model from the official Llama-2-7b[12] with the only change that decreasing num_hidden_layers
from 32 to 4, on an Alibaba Cloud ecs.gn7-c12g1.3xlarge instance[4](with 40GB GPU RAM) using
the CodeAlpaca-20K dataset [1]. CodeAlpaca-20K contains samples with text lengths ranging from
approximately 100 to 3000 characters. In each training iteration, a fixed number of randomly selected
samples are assembled into a batch, resulting in variable batch shapes across different iterations.

To assess the effectiveness of BladeDISC++, we compared memory usage and end-to-end performance
in dynamic shape training using BladeDISC++ against both dynamic and static shape training using
BladeDISC. For static shape training, following common practice, input sequences are padded to
nearest power of 2 in length to balance redundant computation and compilation overhead. Besides,
in our experiments, we deliberately set the largest bucket size equal to the longest sequence length
in the dataset to investigate whether we can achieve comparable memory optimization results using
symbolic shapes instead of exact shapes.

The experimental results indicate that BladeDISC++ can effectively reduce peak memory consump-
tion for dynamic shape training. Furthermore, BladeDISC++ demonstrates comparable memory
consumption to static shape training while also improving end-to-end performance by alleviating the
overhead of recompilation and input bucketing.

Table 1: Training throughput of Llama-2-1b on CodeAlpaca-20K(tokens/second)
Batchsize 14 16 18

BladeDISC(dynamic shape training) 5662.34(38.20 GiB) OOM OOM
BladeDISC(static shape training) 5242.02(35.75 GiB) 5429.38(37.71 GiB) 5103.31(38.92 GiB)

BladeDISC++ 5749.20(35.76 GiB) 6078.71(37.89 GiB) 5738.79(39.18 GiB)

4 Conclusion

This paper shares our industry experience in optimizing memory for dynamic shape graphs . We
proposed op scheduling and rematerialization based on symbolic shapes and developed BladeDISC++.
Evaluations show that BladeDISC++ can effectively reduce memory usage for dynamic shape training
and can achieve comparable memory optimization results to static shape training. As far as we know,
this is a pioneering effort in this area, and we aspire that it will support the compiler community in
managing dynamic shape workloads and promote wider use of dynamic shape compilers.
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