
Don’t Transform the Code, Code the Transforms:
Towards Precise Code Rewriting using LLMs

Chris Cummins Volker Seeker Jordi Armengol-Estapé Aram H. Markosyan

Gabriel Synnaeve Hugh Leather

Meta
cummins@meta.com

Abstract

Tools for rewriting, refactoring and optimizing code should be fast and correct.
Large language models (LLMs), by their nature, possess neither of these qualities.
Yet, there remains tremendous opportunity in using LLMs to improve code.
We explore the use of LLMs not to transform code, but to code transforms. We
propose a chain-of-thought approach to synthesizing code transformations from
a small number of input/output code examples that incorporates execution and
feedback. Unlike the direct rewrite approach, LLM-generated transformations are
easy to inspect, debug, and validate. The logic of the rewrite is explicitly coded
and easy to adapt. The compute required to run code transformations is minute
compared to that of LLM rewriting.
We test our approach on 16 Python code transformations and find that LLM-
generated transforms are perfectly precise for 7 of them and less imprecise than
direct LLM rewriting on the others. We hope to encourage further research to
improving the precision of LLM code rewriting.

1 Introduction

A code transformation f(c) → c′ is a function that rewrites input code c to produce c′. A multitude
of software tasks can be expressed as code transformations from compiler optimizations to legacy
code refactoring. Traditional rule-based code transformations are challenging to implement, and
there is increasing interest in using LLMs to estimate them [1–7]. However, in contrast to rule-based
transformations, the logic of LLMs is opaque, provides no correctness guarantees, and is hard to
debug when incorrect. Instead, we propose using the LLM as a generator for code transformations,
g(C,C ′) → f , where the output is an implementation of a code transformation, f(), inferred from
input/output code examples (C,C ′) before and after a transformation has been applied.

3 I/O examples.
Describe the xform

Xform
description

Can that be
improved?

Implement
xform

Xform
implementation

That doesn't work on
this example. Why not?

Examples
correct?

END

Failure
analysis

BEGIN

YES NO NO YES Evaluate on
hidden tests

Evaluate on
examples

Figure 1: Our chain-of-thought approach to synthesizing code transformations (xforms) using LLMs.
Yellow boxes are prompts, blue are LLM outputs.

Machine Learning for Systems Workshop at (NeurIPS 2024).

2 Synthesizing Code Transformations from Input/Output Examples

We present a chain-of-thought [8] approach for the efficient synthesis of code transformations from
input/output examples, shown in Figure 1. The approach requires only a small number of input/output
examples to successfully generate a code transformation implementation. Key to our approach is the
plentiful use of loopback iterations to encourage the model to introspect on its own output, and to
speculate as to the cause of failures before attempting to fix them. The methodology is as follows:

1. We first present three input/output code examples and prompt the model to describe the
underlying transform in precise natural language.

2. We allow the model to iterate on this description up to 10 times. We found that the initial
description often under-explains the transformation, particularly the handling of edge cases.

3. Once the model assesses that the description is adequate, we provide this description,
along with the original input/output code examples, and prompt the model to generate an
implementation of the transform.

4. We take the model-generated transform implementation and execute it in a sandboxed
environment against 10 input/output examples, including the ones it has seen. If the
transform fails to produce the correct output, or if it crashes, we provide the counterexample
or error message.

5. In case of failure we then perform an additional introspection step in which we ask the
model to explain why the problem occurred.

6. We prompt the model with the previous incorrect code, the failing counterexample (both
expected output and actual output), and the failure analysis generated in the previous step.

7. This process repeats until the transform works on all examples, up to a maximum of 50
iterations. We then evaluate the quality of the generated transform on unseen input/output
examples.

In this work we target Python and formulate code transformations as Abstract Syntax Tree (AST)
rewrites using the format: def xform(code: ast.AST)-> ast.AST.

Table 1: Python code transformations, and the performance of two approaches: Transform the code,
and Code the transform. We show F1 scores, with precision (how accurately the transformation is
applied) and recall (how often transformation opportunities are identified) in parentheses.

Class Transform Description Transform the code Code the transform

Arithmetic
Add / subtract zero Simplify x + 0 → x and x − 0 → x. 0.92 (0.85, 1.00) 1.00 (1.00, 1.00)

Constant folding Evaluate integer literal expressions in-place,
e.g. x = 10 + 15 → x = 25. 0.95 (0.91, 1.00) 1.00 (1.00, 1.00)

Divide / multiply by one Simplify x ÷ 1 → x and x × 1 → x. 0.93 (0.88, 1.00) 1.00 (1.00, 1.00)

Boolean
Collapse nested ifs Recursively flatten nested if conditionals to a

compound conditional. 0.81 (0.68, 1.00) 1.00 (1.00, 1.00)

De Morgan’s law Rewrite !(a & b)→ !a | !b. 0.82 (0.69, 1.00) 1.00 (1.00, 1.00)

Reorder conditional Flip the branches in if not/else
conditionals to if/else. 0.52 (0.35, 1.00) 0.93 (0.86, 1.00)

Liveness
Dead code elimination Remove if conditionals if the branch

condition statically evaluates to False. 0.93 (0.88, 1.00) 0.99 (0.99, 0.99)

Redundant fn. elimination Remove function definitions, and their calls, if
the function contains no instructions. 0.93 (0.87, 1.00) 1.00 (1.00, 1.00)

Unused var. elimination Remove declared but unused variables. 0.87 (0.77, 1.00) 0.98 (0.96, 1.00)

Loops
List comprehension Rewrite for loop as list comprehension. 0.60 (0.43, 1.00) 0.90 (0.86, 0.95)
List comp. w. condition As above but the loop body has a conditional. 0.62 (0.45, 1.00) 0.82 (0.73, 0.93)
Loop dupe Duplicate loops (not semantics preserving). 0.50 (0.34, 1.00) 0.99 (1.00, 0.99)

Loop unroll Fully unroll loops with statically known
range() iteration bounds. 0.82 (0.70, 1.00) 0.98 (0.99, 0.98)

Optimization
Dot product to torch Replace for loop that computes vector dot

product with torch API. 0.66 (0.49, 1.00) 0.94 (0.95, 0.93)

Pointwise add to torch Replace for loop that computes pointwise
add with torch API. 0.57 (0.40, 1.00) 0.97 (0.94, 1.00)

Torch zero grad Replace m.zero_grad() with a loop over
model parameters, assigning to None. 0.87 (0.77, 1.00) 1.00 (1.00, 1.00)

Overall 0.75 (0.60, 1.00) 0.97 (0.95, 0.99)

2

Here are 3 examples of python code before and after a
transformation has been applied to them:

The transformation being performed is the replacement of for
loops that iterate a fixed number of times with repeated
statements. Specifically, any for loop that has a range-based
iterator with a constant upper bound is replaced by repeating
the loop body that many times. This transformation effectively
"unrolls" the loop, replacing it with a sequence of identical
statements, one for each iteration that would have been
performed by the loop.

def encode_shift(s: str):
 print('hello, world!')
 print('hello, world!')
 # snip...

def encode_shift(s: str):
 for i in range(2):
 print('hello, world!')
 # snip...

import ast
def xform(tree: ast.AST) -> ast.AST:
 pass # implement this function

import ast

class LoopUnroller(ast.NodeTransformer):
 def visit_For(self, node):
 if (
 isinstance(node.iter, ast.Call) and
 isinstance(node.iter.func, ast.Name) and
 node.iter.func.id == 'range' and
 len(node.iter.args) == 1 and
 isinstance(node.iter.args[0], ast.Constant)
):
 num_iterations = node.iter.args[0].n
 new_body = []
 for _ in range(num_iterations):
 new_body.extend(
 [ast.copy_location(n, node) for n in node.body]
)
 return ast.With(
 items=[], body=new_body, lineno=node.lineno
)
 return self.generic_visit(node)

def xform(tree: ast.AST) -> ast.AST:
 unroller = LoopUnroller()
 return unroller.visit(tree)

import ast

class LoopUnroller(ast.NodeTransformer):
 def visit_For(self, node):
 if (
 isinstance(node.iter, ast.Call) and
 isinstance(node.iter.func, ast.Name) and
 node.iter.func.id == 'range' and
 len(node.iter.args) == 1 and
 isinstance(node.iter.args[0], ast.Constant)
):
 num_iterations = node.iter.args[0].n
 new_body = []
 for _ in range(num_iterations):
 new_body.extend(
 [ast.copy_location(n, node) for n in node.body]
)
 return new_body
 return self.generic_visit(node)

def xform(tree: ast.AST) -> ast.AST:
 unroller = LoopUnroller()
 if isinstance(tree, ast.Module):
 tree.body = [unroller.visit(n) for n in tree.body]
 elif isinstance(tree, ast.FunctionDef):
 tree.body = [unroller.visit(n) for n in tree.body]
 else:
 raise ValueError("Unsupported AST type")
 return tree

That doesn't work on this input:

The failure occurred because the ast.With node is not
suitable for replacing the loop body in this case. The with
statement in Python is used for context management, such as
opening files or acquiring locks, and it's not a valid
replacement for a simple sequence of statements. In this case,
we should have simply returned a list of statements instead of
wrapping them in an ast.With node.

def fib4(n: int):
 # snip ...
 for i in range(2):
 x += 1
 # snip ...

def fib4(n: int):
 # snip ...
 with :
 x += 1
 x += 1
 # snip ...

1 | PROMPT

2 | RESPONSE2 | RESPONSE

4 | MODEL RESPONSE

1 | PROMPT

3 | PROMPT

2 | MODEL RESPONSE
M

O
D

EL
M

O
D

EL

1 | PROMPT

3 | PROMPT

After:

< snip 2 more examples … >

Example 1
Before:

Complete the python code that performs the transformation:

< snip additional instructions on expected output format … >

The correct output should be:

but instead was:

Try again.

 # snip ...

Figure 2: An example LLM dialog, showing how the results of previous queries are used to generate
natural language descriptions and failure analyses that are integrated into the chain-of-thought.

Figure 3: (a) the average number of attempts needed to synthesize transforms of each class correlates
with the size of the transforms; (b) more attempts are required if chain-of-thought steps are removed
or smaller models used; (c) synthesized transforms (CTT) of all model sizes work similarly well, but
code rewriting ability (TTC) scales with model size.

3

3 Experiments

We evaluate the performance of our Code the transforms approach (CTT) and compare it against a
Transform the code (TTC) approach in which the LLM is used to directly rewrite the code. For TTC
we provide the model 10 examples and prompt it to apply the same transformation to unseen codes in
turn. For CTT we use the examples to synthesize a transform in the manner described previously
and then test the synthesized transform against unseen codes. We use the 405B parameter Llama 3.1
model [9] and sample it with temperature 0.25. We repeat the experiment 10 times.

Benchmarks. We assemble a dataset of 480 input/output Python programs covering 16 code
transformations, summarized in Table 1. We aim to cover a range of uses and complexities from simple
semantics-preserving rewrites (e.g. constant folding) to more substantial code optimizations (e.g. dot
product to torch). We generated the example programs by adapting HumanEval solutions [10].

Our benchmark comprises 30 input/output Python code pairs for each of the transformations: 10
public examples available to the LLM, 10 hidden examples, and a further 10 examples of code where
the transformation does not apply. The average length of each program is 11 lines of code.

Metrics. Code transformation requires that two tasks be completed successfully: identifying
regions of code eligible for transform, and executing the transformation on identified code re-
gions. To assess these properties we use the binary metrics of Precision and Recall. For a par-
ticular (input,expected_out,actual_out) tuple, the transform is precise if actual_out ==
expected_out, and successfully recalled if actual_output != input && expected_out != input.
F1 is the harmonic mean of precision and recall. Scores are calculated over 10 runs.

Results. Table 1 compares the performance of both approaches. CTT has higher precision than TTC
across every problem (overall 0.95 vs 0.60). Although overall scores are high, CTT still occasionally
fails. Figure 2 shows an example failure and the model self-correcting. Qualitatively, we found
that while CTT does a good job at comprehending the problem, it often struggles to turn that into
working code. For example, the simple arithmetic transforms required only 1.5 attempts on average
to synthesize a transform, whereas optimization transforms, which require more substantial code
changes, require 11.8 (Figure 3a). Typically we found errors made by CTT to be easy to debug.
Synthesized transforms average 34.4 lines of code (Figure 3a), compared to TTC which requires
reviewing every output to check for errors. CTT performs slightly worse than TTC on recall (0.99 vs
1.00), as it would occasionally miss opportunities to apply a transformation that can be applied.

Ablations. Figure 3b compares the rate at which code transformations are synthesized when
using our full chain-of-thought approach (Full), when the failure analysis step is removed (NFA),
and when the natural language description step is removed (ND). Removing these steps from the
chain-of-thought reduces the rate of transform synthesis efficiency.

We also repeated the full chain-of-though experiments using the smaller 70B and 8B parameter Llama
3.1 variants. Interestingly, we discovered that while the smaller models require many more inferences
to synthesize transforms (Figure 3b), the transforms synthesized by all models perform equally well
(Figure 3c), suggesting a compute/inference budget tradeoff. For TTC we see the expected result that
smaller models are worse at directly rewriting code.

4 Discussion

We cannot afford the burden of reviewing and testing every piece of code an LLM touches. We
propose an alternative formulation that reduces reviewing and testing costs by having the LLM
instead generate code transformations. We show that this is more precise than using the LLM directly,
but there is still a way to go. For example, we see in Figure 2 that although the model-generated
code provides the expected transformation, there are obvious improvements that a human developer
would make. We suspect that reinforcement learning and bootstrapped fine-tuning [11] could improve
performance.

4

References
[1] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John

Grundy, and Haoyu Wang. Large Language Models for Software Engineering: A Systematic
Literature Review. arXiv:2308.10620, 2023.

[2] Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, and
Yiling Lou. Large Language Model-Based Agents for Software Engineering: A Survey.
arXiv:2409.02977, 2024.

[3] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A Survey on Large
Language Models for Code Generation. arXiv:2406.00515, 2024.

[4] Aman Madaan, Alexander Shypula, Uri Alon, Milad Hashemi, Parthasarathy Ranganathan,
Yiming Yang, Graham Neubig, and Amir Yazdanbakhsh. Learning Performance-Improving
Code Edits. arXiv:2302.07867, 2023.

[5] Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel
Synnaeve, and Hugh Leather. Meta Large Language Model Compiler: Foundation Models of
Compiler Optimization. arXiv:2407.02524, 2024.

[6] Zimin Chen, Sen Fang, and Martin Monperrus. Supersonic: Learning to generate source code
optimizations in C/C++. TSE, 2024.

[7] Jordi Armengol-Estapé, Jackson Woodruff, Chris Cummins, and Michael FP O’Boyle. SLaDe:
A Portable Small Language Model Decompiler for Optimized Assembler. In CGO, 2024.

[8] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.
In NeurIPS, 2022.

[9] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 Herd
of Models. arXiv:2407.21783, 2024.

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating Large Language Models Trained on Code. arXiv:2107.03374, 2021.

[11] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STaR: Bootstrapping Reasoning
with Reasoning. NeurIPS, 2022.

5

	Introduction
	Synthesizing Code Transformations from Input/Output Examples
	Experiments
	Discussion

