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Abstract

The Mixture of Experts (MoE) model is a powerful architecture that dynamically
selects a subset of experts for each input, enabling the model to scale efficiently.
However, the gating mechanism, which determines the assignment of tokens to
experts, introduces 4-dimensional (S×E×C×M 1) computational complexity due
to its reliance on sparse representation which results in wasteful dense-computation.
In this work, we present TurboMoE, a novel approach to accelerate MoE model
training by optimizing the gating logic through smart kernel-fusion and data-layout
transformations.
Our method addresses the computational bottlenecks of the gating process by
introducing three specialized kernels. The first kernel efficiently computes expert
scores and performs top-k expert selection, while the second kernel scatters input
tokens into expert-specific buffers, minimizing the need for sparse operations. Fur-
thermore, we introduce the third MoE-Gather kernel, which replaces the traditional
sparse matrix multiplication, streamlining the process of combining expert outputs.
By integrating these kernels, TurboMoE achieves substantial end-to-end speedups
over the state-of-the-art solution, MegaBlocks, with a 55% faster training time for
top-1 selection and a 41% improvement for top-2 selection configurations. These
optimizations significantly reduce the computation overhead of the gating function-
ality from O(SECM) → O(SM ). TurboMoE demonstrates that by removing the
reliance on sparse computation, MoE models can achieve unprecedented training
efficiency, reaching 460 Tera-Flops on 32 NVIDIA-H100 for a 32-expert MoE
architecture with Top-2 gating configuration, paving the way for more scalable and
effective applications.

1 Introduction
The Mixture of Experts (MoE) architecture has become a cornerstone in modern machine learning
for its ability to scale models efficiently [3, 4, 5, 6]. By dynamically selecting a subset of experts
for processing each input, MoE models offer a unique advantage: they can scale to immense sizes
without a proportional increase in computational costs. This selective activation of experts ensures that
computational resources are focused where they are most needed, making MoE models particularly
appealing for large-scale applications. However, this architectural efficiency comes with its own set
of challenges, primarily centered around the gating mechanism and the all-to-all communication.
Here, we focus on the gating function and how the tokens are routed for different experts.

The gating mechanism in MoE models is responsible for deciding which experts should handle each
token, a decision that is inherently sparse—only few experts are selected for each token. Figure 1(a)
shows the computatuion flow for the top-1 MoE gating. Traditional implementations of the gating
logic involve several steps that introduce substantial computational overhead. The process begins
with generating a sparse mask through top-k selection for each token. This step is computationally

1S: #tokens, E: #experts, C: capacity, M: model_dimension
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Figure 1: (a) MoE-Gating computation overview. (b) TurboMoE data-transformation and kernel
optimization.

expensive, as it not only selects the top-k experts but also involves a Random-Token-Selection (RTS)
mechanism to balance the load across experts.

Once the experts are selected, the indexing operation uses the generated mask to sequence tokens
through a cumulative sum (cumusum) operation, which determines the order in which tokens will
be processed by the experts. The cumsum operation is inherently a sequential one, and cannot be
efficiently parallelized. This is followed by the creating an output mask, a 3-dimensional one-hot
matrix that indicates the specific experts and capacities assigned to each token. The mask guides the
subsequent steps of scattering tokens to the appropriate experts and gathering the outputs, both of
which involve complex data manipulations and sparse matrix-multiplications (MM).

In conventional frameworks like PyTorch, these operations are typically executed using high-level
operations such as dense einsum, which internally rely on reshaping, transposing, and dense MMs.
These operations, while flexible, come with significant drawbacks: they incur frequent data reordering
and copying which makes them inefficient. Furthermore, the use of dense MM to do sparse MM
significantly increases the overhead. The result is a gating mechanism that, while functional, becomes
a bottleneck in the overall training process, particularly as the number of experts (E) and the model’s
scale increase.

Recognizing these inefficiencies, we introduce TurboMoE, a novel approach designed to optimize
the MoE gating mechanism by eliminating its reliance on sparse computation. The core innovation
of TurboMoE lies in the fusion of multiple operations into custom kernels, coupled with smart
data-layout transformations that remove the need for costly data reordering and dense operations on
sparse data.

The key components of our approach include:

• Logit Softmax + Top-1/2/4 Selection: We generate an assignment table for input tokens,
determining expert selection and saving expert scores for subsequent use.

• Random-Token-Selection + TopK: This kernel finalizes expert assignments, ensuring load
balancing through random token selection and capacity-based filtering.

• Scatter Tokens Contiguously: Tokens are moved into expert-specific slots, with mapping
information stored for efficient retrieval and processing.

• Gather Expert Outputs: We restore the original token order and apply MoE gating scores,
replacing wasteful dense multiplication on sparse data with more efficient operations.

By eliminating the overhead associated with data reorganization and sparse computation, TurboMoE
achieves a remarkable 3x speedup in training time for gating operations compared to standard
implementations, particularly when scaling to 64-expert parallelism. This work not only advances the
efficiency of MoE models but also provides a scalable solution for future developments in machine
learning architectures.

2 MoE-Gating Optimizations For Irregular and Sparse Operators
In order to remove the sparse complexity of the MoE-gating, TurboMoE employs several buffers
storing three main information: the mapped experts (expert-ID and its probability score) for each
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Table 1: Computation Complexity of the MoE-Gating operations.
PyTorch Implementation TurboMoE Implementation

Top-K selection S × E S
Scatter to experts S × E × C S

Gather from experts S × E × C ×M S ×M

token, the offset of the token at each selected expert, and the number of tokens selected for each
expert. Figure 1(b) illustrates the data-structure used by TurboMoE for storing the gating information.
By using this meta-data, we can easily compute each token’s mapped address to the scatter buffer.
We divide the gating functions into three main kernels as shown by Figure 1(b).

• Logit softmax + Top-1/2/4 selection: SoftMax computes the probability of selecting different
experts for each token which is then used to choose the ones with the highest likelihoods.
This kernel employs the expert-assignment table to store the expert-ID and the expert-score
for each token. It also counts the number of tokens mapped for each expert. The score is
later used in the gather kernel when merging the expert’s outputs.

• Random-Token-Selection + TopK: in this kernel, we finalize the expert-assignment based on
the number of tokens assigned to experts. If more than capacity is assigned at each expert,
the RTS will drop some based on the random probabilities to enforce load-balancing. For the
experts which have lower assignments than capacity, all the assigned tokens are processed.
This kernel finally stores the token-offsets assigned to each expert. As Table 1 shows, we
reduce the complexity of this part from O(SE) → O(S).

• Scatter tokens in contiguous manner: this kernel employs the expert-assignment table plus
the token-offset table to move the tokens into the slots for each selected expert. It also
stores the mapping slot information in a small table with the size of #tokens to prevent the
recalculation the mapped address for each token. This table will be used both in the Gather
kernel, and also in the backward pass. By using this data-representation, we can reduce the
cost of this part from O(SEC) → O(S).

• Gather the experts output: by using the mapped slot information from the scatter kernel,
we now put the output of each expert in the right token’s address. We also multiply the
output by the MoE scores computed in the initial kernel. Having the meta-data created
in the previous kernel helps prevent the unnecessary matrix-multiplication with the sparse
expert-score matrix (SCE) that is used for the PyTorch implementation. TurboMoE reduces
this expensive operation’s complexity from O(SECM) → O(SM ) as it only requires to go
through all experts’ selected tokens rather than traversing the entire expert’s capacity and
pick the expert which is selected for each token.

For the backward implementation, we use a modified version of the scatter kernel as the gather’s
backward kernel. This kernel also computes the expert-score’s gradient which sums over the expert
output’s gradient along the model-dimension. Similarly, we employ the gather kernel to implement
the backward of the scatter function. One important aspect of the backward implementation is the
training stability. For instance, when implementing the gradient of the different parts of the gating,
we use the mathematics chain rule of differentiation, and simplify the formula to reduce the number
of operations. One basic reduction technique we used is factoring the scale for the accumulating
of the partial results of the gradients computation. However, we noticed that such optimization
can result in training instability due to numerical underflow and overflow. So, we realized that the
scaling, no matter how costly it is, should happen before we sum up the partial results. Overall, we
have improved and verified the stability of the TurbMoE’s training performance across several MoE
architectures with different number of experts. In fact, we leveraged TurboMoE for both pre-training
and post-training of Snowflake Arctic [6].

3 Performance Evaluation
In this section, we evaluate TurboMoE’s performance, and present four set of results: i) Latency
and throughput comparison, ii) Performance Breakdown, iii) Expert Scalability, and iv) Small Batch
Performance.

Configuration: Using a 2.4B LLaMA-based model as the base, we assess TurboMoE with vari-
ous MoE configurations, comparing it against a basic MoE implementation [1] and MegaBlocks,
the current SOTA. All experiments run on a 4-node, 32-GPU cluster of NVIDIA H100s, using

3



(a) (b) (c)
Figure 2: (a) Latency and throughput of the different MoE implementations compared with a strong
dense training system. (b) Latency and throughput of TruboMoE using different expert-parallelism
degrees: 8, 16, and 32. (c) Comparing latency and performance-efficiency of TurboMoE and
Megablocks using different top-k gating at large-scale training.
Megatron-DeepSpeed as the core system. We apply DeepSpeed’s ZeRO-2 [7]for efficient gradient
communication.

TurboMoE vs Baseline: As the first experiment, we train an 8-expert MoE model (14.7B parameters)
with a 4096 context length on 32 H100 GPUs. We compare performance not only with other MoE
implementations but also with a dense model to evaluate the overhead of token routing. As shown in
Figure 2(a), TurboMoE outperforms basic MoE by 46%, reaching 470 Tera-Flops, while MegaBlocks
achieves a 376 Tera-Flops throughput - 25% less than TurboMoE. Compared to dense training,
TurboMoE only has 14.5% overhead, with 8% of this from gating computations. Despite the system
overhead, MoE models deliver significantly higher accuracy for the same compute (total floating point
operations) and can achieve equivalent accuracy using 5x less compute, making them a preferred
approach over dense models [5, 2]. Key Results:

• TurboMoE achieves 46% better performance than naive MoE, reaching 470 Tera-Flops, and
25% better system throughput than MegaBlocks.

• At large-scale training system, TurboMoE achieves 1.55x and 1.41x speedup over
MegaBlocks for top-1 and top-2 gating, respectively.

Performance Breakdown: In terms of latency breakdown, MegaBlocks’s forward pass latency is
nearly identical to the dense model, though its backward pass is 51% slower. TurboMoE, on the
other hand, has a 20% forward pass overhead and an 11% backward pass overhead. MegaBlocks’
handling of sparse tokens during the forward pass increases backward overhead due to sparse gradient
computations, while TurboMoE uses a simpler gather-scatter operation by emploting the metadata
saved during forward pass, minimizing the backward overhead. This gives TurboMoE a significant
performance advantage, yielding 25% better throughput than MegaBlocks.

Expert Scalability: Figure 2(b) demonstrates TurboMoE’s scalability, with performance remaining
stable when scaling from 8 to 16 experts, and only 3% and 5.5% drop when using 32 and 64 experts,
respectively (We use 8-node cluster for the EP-64 experiment to check our system-scalability).

Small Batch Performance: Finally, we evaluate small-batch performance for different top-k gating
configurations. This setting is common for the large-scale model training system where vast number
of GPUs is equipped to run the training experiments as fast as possible. Under this conditions, the
system design needs to be scalable enough to reduce the time even though the workload decreases
compared to smaller-scale systems. Figure 2(c) shows that TurboMoE reaches 95% efficiency with
top-2 gating and 80% with top-1. TurboMoE outperforms MegaBlocks with a 1.55x speedup for
top-1 gating and 1.41x for top-2 gating.

4 Conclusion
In this work, we introduced TurboMoE, an optimized solution that addresses the inefficiencies of tra-
ditional MoE gating mechanisms through kernel-fusion and data-layout transformations, eliminating
costly sparse operations. Our evaluation shows significant speedups over MegaBlocks, with 1.55x
and 1.4x improvements for top-1 and top-2 gating, respectively. TurboMoE scales efficiently across
parallelism dimensions, offering high throughput and resource utilization for large-scale systems. We
plan to release these optimizations as part of the DeepSpeed library, enhancing MoE training for the
broader machine learning community.
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