FlexFlood: Efficiently Updatable
Learned Multi-dimensional Index

Fuma Hidaka Yusuke Matsui
The University of Tokyo The University of Tokyo
hidaka@hal.t.u-tokyo.ac.jp matsui@hal.t.u-tokyo.ac.jp
Abstract

A learned multi-dimensional index is a data structure that efficiently answers
multi-dimensional orthogonal queries by understanding the data distribution using
machine learning models. One of the existing problems is that the search per-
formance significantly decreases when the distribution of data stored in the data
structure becomes skewed due to update operations. To overcome this problem, we
propose FlexFlood, a flexible variant of Flood. FlexFlood partially reconstructs the
internal structure when the data distribution becomes skewed. Moreover, FlexFlood
is the first learned multi-dimensional index that guarantees the time complexity of
the update operation. Through experiments using both artificial and real-world data,
we demonstrate that the search performance when the data distribution becomes
skewed is up to 10 times faster than existing methods. We also found that partial
reconstruction takes only about twice as much time as naive data updating.

1 Introduction

Filtering, scanning, and updating of data are fundamental operations for databases, and various data
structures have been studied to perform these operations efficiently. In the real world, we often need
to handle multi-dimensional data, and Kd-tree and its variants [5 |20} 31]] are typical data structures
for handling them. These data structures are widely used in real-world applications [3} 23] [22].

Recently, there has been active research to improve data structures by learning the distribution of data
and queries with machine learning models. Such data structures are called learned index [24]. One of
the significant challenges in learned multi-dimensional indexes [32} [12} 25/ 19} 8]] is that many do not
support data update operations. Even if they do, none describe the time complexity for updating.

Therefore, we proposed a flexible variant of Flood (FlexFlood) that supports efficient data updating by
adaptively modifying the internal structure of the existing learned multi-dimensional index, Flood [32].
We proved that the amortized time complexity of updating is O(D log N) under two assumptions that
the data increases at an approximately constant pace and that the training results of the ML model
satisfy certain conditions. Here, D is the dimensionality of the data, and N is the total number of data.
Furthermore, experiments using multiple artificial and real-world datasets confirm that the “certain
conditions” can be sufficient. The original Flood’s search speed slows down as we update data, but
FlexFlood remains fast. As a result, FlexFlood is up to 10 times faster than Flood after many updates.
The source code for FlexFlood is available at https://github.com/mti-lab/FlexFlood.

2 Related Work

Many classical data structures have been proposed for handling multi-dimensional data. For example,
tree-based structures include Kd-tree [5, [L6l], R-tree [20) 4], and Oct-tree [28]]. Grid File [33] is also
proposed as a space-partitioning structure. Additionally, there is the Z-order curve algorithm [31]],
which reduces multi-dimensional data into one dimension using a special sorting technique.

Machine Learning for Systems Workshop at (NeurIPS 2024).

https://github.com/mti-lab/FlexFlood

Learned index [24} 13| 2] is a data structure that incorporates machine learning models into classical
data structures such as B-tree [1]], Hash Map [[10], and Bloom Filter [6]]. Learned indexes improve
performance by taking advantage of the distribution of data and queries. Recently, learned indexes
have been actively researched. For example, several learned Bloom Filters have been proposed [29,
260,130,134/ 135]]. They achieved a better memory/accuracy trade-off than the original Bloom Filter.

Learned indexes are vulnerable to data update operations in general. This is because if the data
distribution is distorted by updating operations, the accuracy of the machine learning model will
decrease, and search performance will decrease, too. To address this problem, learned indexes that
support efficient updating operations have been proposed [[11} 15} [14}[37].

The above learned indexes can handle only one-dimensional data. On the other hand, learned
indexes for multi-dimensional data have also been proposed. For example, Flood [32]], Tsunami [[12],
Lisa [25], RLR-tree [[19]], Waffle [8]], and so on [2]]. Flood and Tsunami do not support data updating
operations. Lisa, RLR-tree and Waffle support them, but there are no discussion of time complexity.

3 Preliminary

First, we define the problem setting. N D-dimensional vectors vy, ..., v are given, where v,, € RPD.
We denote the d-th dimension of v, as v, [d] € R. Initially, we construct a index based on the N
vectors. Then, we process () queries sequentially. Queries are provided in the following formats:

» Search Query: 1 € R” and r € RP are provided. 1 and r represent the endpoints of the
diagonal of the search range hyper-rectangle. We enumerate all vectors v,, contained within
the data structure, such that forall d € {1,2,..., D}, [d] < v,[d] < r[d] holds.

* Insert Query: A D-dimensional vector v € R is provided. We add it if this vector is not in
the data structure. We do nothing if the same vector already exists within the data structure.

* Erase Query: A D-dimensional vector v € R” is provided. We remove it if this vector
exists within the data structure. We do nothing if the vector is not in the data structure.

Next, we explain the Flood algorithm [32]], which is the basis of the proposed method. Flood divides
the D-dimensional space into approximately equal parts by (D — 1)-dimensional grid cells. Given
D-dimensional input vectors, Flood assigns them to the corresponding cell. Within each cell, Flood
keeps vectors sorted using the value of the D-th dimension that is not used for the grid division. The
parameters of Flood are the sort dimension and the number of cell partitions. Flood optimizes these
parameters using a gradient descent method with a random forest regression model [7} 36].

Flood uses sorted arrays to hold data in cells, but updating data on a sorted array is very expensive.
We can make Flood updatable by replacing sorted arrays with B-trees. (Appendix [A]discussed this
overhead.) However, if the data distribution changes, the grid partitioning at the initialization becomes
meaningless and the updatable Flood’s search speed slows down greatly. Therefore, we propose an
efficient data updating algorithm to solve this problem, using the updatable Flood as a baseline.

4 Proposed Method: FlexFlood

Based on the updatable Flood, we propose FlexFlood, a data updating algorithm that ensures fast
search even if data distribution changes. Figure(l|is an overview of FlexFlood. Remember Flood
constructs cells so that for each axis d, the total number of data in the cell with the same d-dimensional
value is Ni (an equal number of data for each cell). Here, x4 is the number of cell partitions on axis d.

When the number of vectors in each cell deviates far from % due to data updating, the search of the
updatable Flood slows down greatly. Therefore, FlexFlood re-partitions around the cells as follows.
(Appendix [B]discussed thresholds for re-partitioning in more detail.)

2N

* If the cell contains more than g vectors, we split the cell into two.

TN

* If the cell contains less than % vectors and the neighboring cell contains less than 62

vectors, we merge the two cells.
* If the cell contains less than % vectors and the neighboring cell contains more than

vectors, we equalize the number of vectors in the two cells.

TN
Gxd

) o . [XY 0. ° ° . ®e .. .: ° . [XY 0. .e
° Repartition
.. ® .. Update [] i :... [] b :...
[] [—l
o o ® ° ° ° ° : ° ° :
[J ° [J [] [J [J [
° [] [J CIJ C K]

Figure 1: Overview of our method (D = 2): Even if N = 27 data are equally divided into x1 = 3
cells at the initialization, the distribution can become skewed due to data updating, and the updatable
Flood slows down. We aim to ensure the search performance by partially re-partitioning the cells.

Re-partitioning in this way keeps the number of vectors in the cell constant and keeps the search
speed fast. However, since the above re-partition requires a large amount of movement of data within
the cells, it is not obvious whether the update operation can be performed efficiently.

We therefore analyzed the time complexity of this algorithm. Based on the insight that re-partitions
with very high computational costs occur only with sufficiently low frequency, we found that
the computational complexity of the updating operation is not large when considered in terms of
amortization. Under the two assumptions that (1) the data increases at a pace that can be regarded
as constant and (2) H(?Zl Tq 25:1 zq < DNlog N, we proved that the updating operation of
FlexFlood is amortized at O(D log N). (See Appendix [C|for detailed analysis.)

The update operation of the updatable Flood is O(log V), which is D times faster than ours. Therefore,
we can interpret FlexFlood as an algorithm that ensures high search performance even when the data
distribution is skewed, instead of sacrificing up to D times the complexity of the update operations.

S Experiment

We evaluate FlexFlood. The runtime environment is Intel Core 17-11800H, 8 cores, 2.3 GHz, 32 GB
memory. The four data structures used for comparison and their implementations are shown below.

 Self-Balancing Kd-tree (SB-Kdtree) [15,[16]]: We implemented it in C++.
* R-tree [20]: We used C++ boost::geometry::index::rtree [17]].

Updatable Flood: We implemented Flood in C++, then we replaced Flood’s sorted arrays
with B-trees published by Google [18]].

* FlexFlood: We added cell re-partitioning algorithm to the updatable Flood.

As a dataset, we used (1) normal distribution, (2) Stock Price dataset [21]], and (3) Open Street Map
dataset [9]. See Appendix [D]for details on data and query generation methods.

6 Result

Figures [2]illustrate the cumulative query processing time for each data structure for each dataset. The

number of cell partitions and whether the condition HdDzl x4 ZdDzl xq < DN log N was satisfied or
not in each dataset are shown in Table [Tl

First, looking at Table[I] we can see that the assumption (2) was always satisfied within the range of
the experiments conducted here. Therefore, we can assume that the amortized time complexity of the
data updating operation of FlexFlood is O(D log N) for practical purposes.

We then turn focus on Figures[2a] [2b] the results of the update queries. Comparing FlexFlood
with the classical data structures such as SB-Kdtree and R-tree, FlexFlood processes update queries
about 1.1 to 2.9 times faster. FlexFlood is better than the SB-Kdtree and R-tree for all datasets.
Comparing FlexFlood with the updatable Flood, FlexFlood requires at most 2.0 times longer runtime.
Remember that in theory, the cell re-partitioning algorithm takes about D times longer runtime than
the updatable Flood’s data updating operation in the worst case. In light of this, we believe that

Table 1: Number of cell partitions and whether the conditional expression was satisfied or not

Dataset {za}l | HdD:1 Tq Zle xqg DNlog N Assumption (2)
3D Normal Distribution {21,17,1} 1.4-10% 5.0 - 10° v
4D Stock Price {19,19,1, 39} 1.1-106 1.4-107 v
5D Open Street Map {17,17,13,23,1} 6.1-10° 1.0-108 v
1.00 —
= —— SB-Kdtree / Y “£g
= (V] (]
v0.75) — R-tree £ S
E — Updatable Flood = e 3
¢ 0.50{ — FlexFlood (Ours) £ 25
kS kS ©
20.25 2 21
8 > >
0.00 “o “o
0.00 025 050 0.75 1.00
. 0 1 2 3 00 05 10 15 2.0
Queries 1e6 # Queries le6 # Queries le6
(@) Normal Distribution Update (b) Stock Price Update (c) Open Street Map Update
—4 —_ 1500
i) i) =
E 3 E ® Elooo
= [i
) s g
B 520 B 500
51 =) =]
1S 1S E
> > =
O @) (]
0 0 0
0.00 0.25 0.50 0.75 1.00 0 1 2 3 60 05 10 15 20
Queries le6 # Queries le6 # Queries le6
(d) Normal Distribution Search (e) Stock Price Search (f) Open Street Map Search

Figure 2: Experimental results: The upper panel shows the update queries, and the lower panel shows
the results for the search queries. (Lower is better.)

FlexFlood is not only theoretically guaranteed to be computationally feasible but also fast enough for
practical use (e.g., FlexFlood could be D = 5 times slower than the updatable Flood for 5D Open
Street Map dataset, but Figure [2c|shows that FlexFlood is only about 2.0 times slower in practice).

Finally, we refer to Figures [2d] [21] the results of the search queries. Comparing FlexFlood with
the updatable Flood, FlexFlood processes search queries about 3.3 to 10 times faster, outperforming
the updatable Flood on all datasets. Comparing FlexFlood with SB-Kdtree and R-tree, FlexFlood
processes queries on the normal distribution dataset and the Stock Price dataset about 1.2 to 12
times faster. On the Open Street Map dataset, however, FlexFlood is slower than the R-tree although
FlexFlood is faster than SB-Kdtree. Regarding this result, the benchmark paper [27] pointed out that
the learned indexes perform poorly compared to classical data structures on the Open Street Map
dataset because it lacks local structure, making them difficult to learn. Figure [2f]also shows that the
slope of the curve near the origin for the updatable Flood is steeper than that of SB-Kdtree and R-tree.
In light of this fact, we interpret this result as consistent with the results of previous studies.

7 Conclusion

By adaptively reconstructing the internal structure of Flood, we proposed FlexFlood, which supports
efficient data updating. Experimental results show that FlexFlood does not reduce the search speed
and has advantages over classical data structures. Furthermore, we proved that the amortized time
complexity of data updating is O(D log N) under two experimentally valid assumptions.

On the other hand, FlexFlood loses the optimality guarantees regarding the sort dimension and the
number of cell divisions after the data update. Therefore, it may be possible to ensure even faster
search by periodically relearning the distribution. (Appendix |E|discusses this in more detail.)

References

[1] Database architects blog: The case for b-tree index structures. http://databasearchitects!
blogspot.com/2017/12/the-case-for-b-tree-index-structures.html,

[2] Abdullah Al-Mamun, Hao Wu, Qiyang He, Jianguo Wang, and Walid G. Aref. A survey of
learned indexes for the multi-dimensional space, 2024.

[3] Amazon AWS. Amazon redshift engineering’s advanced table design playbook: Compound and
interleaved sort keys. 2016. https://aws.amazon.com/jp/blogs/big-data/amazon-
redshift-engineerings-advanced-table-design-playbook-compound-and-
interleaved-sort-keys/.

[4] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The r*-tree: An
efficient and robust access method for points and rectangles. In Proceedings of the 1990 ACM
SIGMOD International Conference on Management of Data, pages 322-331, 1990.

[5] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9):509-517, 1975.

[6] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422-426, 1970.

[7] Leo Breiman. Random forests. Machine learning, 45:5-32, 2001.

[8] Dalsu Choi, Hyunsik Yoon, Hyubjin Lee, and Yon Dohn Chung. Waffle: in-memory grid index
for moving objects with reinforcement learning-based configuration tuning system. Proceedings
of the VLDB Endowment, 15(11):2375-2388, 2022.

[9] Contributers. Open street map. https://download.geofabrik.de/. Viewed 10 January
2024, Licence: ODbL 1.0.

[10] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer Auf Der Heide, Hans
Rohnert, and Robert E Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM
Journal on Computing, 23(4):738-761, 1994.

[11] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian Zhang,
Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, et al. Alex: an updatable adap-
tive learned index. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 969-984, 2020.

[12] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. Tsunami: A learned
multi-dimensional index for correlated data and skewed workloads. Proceedings of the VLDB
Endowment, 14(2):74-86, 2020.

[13] Paolo Ferragina and Giorgio Vinciguerra. Learned data structures. In Recent Trends in
Learning From Data: Tutorials from the INNS Big Data and Deep Learning Conference
(INNSBDDL2019), pages 5—41. Springer, 2020.

[14] Paolo Ferragina and Giorgio Vinciguerra. The pgm-index: a fully-dynamic compressed learned
index with provable worst-case bounds. Proceedings of the VLDB Endowment, 13(8):1162—
1175, 2020.

[15] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim Kraska. Fiting-
tree: A data-aware index structure. In Proceedings of the 2019 ACM SIGMOD International
Conference on Management of Data, pages 1189-1206, 2019.

[16] Igal Galperin and Ronald L Rivest. Scapegoat trees. In Proceedings of the fourth annual
ACM-SIAM Symposium on Discrete algorithms, pages 165—174, 1993.

[17] Barend Gehrels, Bruno Lalande, Mateusz Loskot, Adam Wulkiewicz, and Oracle and/or its affil-
iates. boost::geometry::index::rtree. https://beta.boost.org/doc/libs/1_82_0/1libs/
geometry/doc/html/geometry/reference/spatial_indexes/boost__geometry_
_index__rtree.html. Viewed 18 September 2024, License: Boost Software License 1.0.

http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
https://aws.amazon.com/jp/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://aws.amazon.com/jp/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://aws.amazon.com/jp/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://download.geofabrik.de/
https://beta.boost.org/doc/libs/1_82_0/libs/geometry/doc/html/geometry/reference/spatial_indexes/boost__geometry__index__rtree.html
https://beta.boost.org/doc/libs/1_82_0/libs/geometry/doc/html/geometry/reference/spatial_indexes/boost__geometry__index__rtree.html
https://beta.boost.org/doc/libs/1_82_0/libs/geometry/doc/html/geometry/reference/spatial_indexes/boost__geometry__index__rtree.html

[18] Google. cpp-btree. https://code.google.com/archive/p/cpp-btree/wikis/
UsagelInstructions.wikil Viewed 30 January 2024, License: Apache License 2.0.

[19] Tu Gu, Kaiyu Feng, Gao Cong, Cheng Long, Zheng Wang, and Sheng Wang. The rlr-tree: A
reinforcement learning based r-tree for spatial data. Proceedings of the ACM on Management of
Data, 1(1):1-26, 2023.

[20] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of
the 1984 ACM SIGMOD International Conference on Management of Data, pages 47-57, 1984.

[21] Evan Hallmark. Daily historical stock prices (1970 - 2018). https://www.kaggle.com/
datasets/ehallmar/daily-historical-stock-prices-1970-2018. Viewed 10 Jan-
uary 2024, License: Unknown.

[22] IBM. The spatial index. https://www.ibm.com/docs/en/informix-servers/12.107
topic=data-spatial-index.

[23] Adrian Ionescu. Processing petabytes of data in seconds with databricks delta.
https://www.databricks.com/blog/2018/07/31/processing-petabytes-of-
data-in-seconds-with-databricks-delta.html.

[24] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proceedings of the 2018 ACM SIGMOD International Conference on
Management of Data, pages 489-504, 2018.

[25] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. Lisa: A learned index structure
for spatial data. In Proceedings of the 2020 ACM SIGMOD international Conference on
Management of Data, pages 2119-2133, 2020.

[26] Qiyu Liu, Libin Zheng, Yanyan Shen, and Lei Chen. Stable learned bloom filters for data
streams. Proceedings of the VLDB Endowment, 13(12):2355-2367, 2020.

[27] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra, Alfons
Kemper, Thomas Neumann, and Tim Kraska. Benchmarking learned indexes. Proceedings of
the VLDB Endowment, 14(1):1-13, 2020.

[28] Donald Meagher. Octree encoding: A new technique for the representation, manipulation and
display of arbitrary 3-d objects by computer. 1980.

[29] Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching.
Proceedings of the NeurIPS, pages 462471, 2018.

[30] Michael Mitzenmacher. Partitioned learned bloom filters. Proceedings of the ICLR, 2021.

[31] Guy M Morton. A computer oriented geodetic data base and a new technique in file sequencing.
1966.

[32] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. Learning multi-
dimensional indexes. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 985-1000, 2020.

[33] Jiirg Nievergelt, Hans Hinterberger, and Kenneth C Sevcik. The grid file: An adaptable,
symmetric multikey file structure. ACM Transactions on Database Systems (TODS), 9(1):38-71,
1984.

[34] Atsuki Sato and Yusuke Matsui. Fast partitioned learned bloom filters. Proceedings of the
NeurlPS, 2023.

[35] Atsuki Sato and Yusuke Matsui. Fast construction of partitioned learned bloom filter with
theoretical guarantees. arXiv preprint arXiv:2410.13278, 2024.

[36] scikit-learn developers. Randomforestregressor. https://scikit-learn.org/dev/
modules/generated/sklearn.ensemble.RandomForestRegressor.html, Viewed 28
October 2024, License: BSD License.

[37] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao Xing. Updatable
learned index with precise positions. Proceedings of the VLDB Endowment, 14(8):1276—1288,
2021.

https://code.google.com/archive/p/cpp-btree/wikis/UsageInstructions.wiki
https://code.google.com/archive/p/cpp-btree/wikis/UsageInstructions.wiki
https://www.kaggle.com/datasets/ehallmar/daily-historical-stock-prices-1970-2018
https://www.kaggle.com/datasets/ehallmar/daily-historical-stock-prices-1970-2018
https://www.ibm.com/docs/en/informix-servers/12.10?topic=data-spatial-index
https://www.ibm.com/docs/en/informix-servers/12.10?topic=data-spatial-index
https://www.databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://www.databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://scikit-learn.org/dev/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/dev/modules/generated/sklearn.ensemble.RandomForestRegressor.html

300

-
v

o

o

N
o
o

=
=)

I

[=)

w
=
o
o

Time / Query (us)
N
o

Time / Query (ps)
Time / Query (us)

o

0
SB-Kdtree R-tree Flood Updatable 0 SB-Kdtree R-tree Flood Updatable SB-Kdtree R-tree Flood Updatable
Flood Flood Flood

(a) Normal Distribution (b) Stock Price (c) Open Street Map

Figure 3: Processing time per search query.

A Sorted Array vs B-tree

The updatable Flood replaces the Flood’s sorted arrays with B-trees, which slows down the search.
Therefore, we conducted comparative experiments on workloads where no update queries existed.
The data structures used for the comparison are (1) Self-Balancing Kd-tree (SB-Kdtree), (2) R-tree,
(3) Flood, and (4) updatable Flood. Note that FlexFlood is exactly the same as the updatable Flood
if there are no update queries. The dataset used for the experiments are (1) normal distribution,
(2) Stock Price dataset, and (3) Open Street Map dataset. We initialized each data structure, and
performed 10* search queries to measure the processing time per search query.

The experimental results are in Figure[3] The search speed of the updatable Flood is about 1.5 to 2.7
times slower than that of Flood. Therefore, we should use regular Flood for workloads where it is
known in advance that there will be no update queries at all. However, for many datasets, updatable
Flood achieves faster search than classical data structures. Therefore, we believe that updatable Flood
is worth using for workloads where update queries are likely to be present.

B Threshold for Re-partitioning

The thresholds for the re-partitioning algorithm introduced in Section [are hyperparameters. In this
section, we discuss the intuitive reasons for determining the thresholds as in SectionEl and how the
performance changes when the thresholds are varied.

B.1 Threshold Selection Criteria

We explain why the threshold for “split” in SectionEIrs set to e and the threshold for “merge” and
“equalize” to 5_—. The purpose of cell re-partitioning is to ma1nta1n the number of data in cells at

a baseline Value T when the number of data in a particular cell increases or decreases too much.
Since “split” halves the number of data in a cell, it is efficient to perform a “split” when the number
of data in a cell is 2. For the same reason, it seems 1ntu1t1ve that “merge” and “equalize” should

be performed when the number of data in a cell reaches 2 . However, the number of data in the
neighboring cell is greater than 5~ and less than 2N Therefore the number of data in the cell after
“merge” and “equalize” is consrdered to be more than ﬂ . For these reasons, we selected 5_— - as the
threshold for “merge” and “equalize”, which is shghtly smaller than 2];2. This is expected to bring

the number of data in the cell after “merge” and “equalize” closer to zﬂ

Also, we explain why the threshold for switching between “merge” and “equalize” is set to . This
_N +2N
is because g g]cv = 3”"’# When ‘merge” or “equalize” is performed, the number of data in the

neighboring cell is between E and % Therefore, we switch between “merge” and “equalize” at
the intermediate value.

B.2 Performance Variation with Thresholds

In order to confirm the appropriateness of the thresholds in Section] we describe the results of
the experiments in which FlexFlood’s performance changed when the thresholds were changed.
We conducted the experiments by varying the coefficients of % on the threshold of “split” in
the range {1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5} and on the threshold of “merge” and
“equalize” in the range {0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6}. The threshold for
switching between “merge” and “equalize” was set to a value halfway between the two thresholds for
re-partitioning. The experimental settings are the same as in Section 3}

Figures] shows the results of the experiments in which search time and update time were measured
separately. Red squares in the heatmap indicate a long search/update time, while blue squares indicate
a short time. That is, blue squares mean better performance. In more detail, we calculated the
percentage change compared to the search/update time when the threshold was set as section [4]
Figures |4 shows that there are few thresholds that are blue squares in the heatmaps for both search
and update. Therefore, we believe that the thresholds of Section[d]are one of the best practical values
of hyperparameters.

C Amortized Time Complexity Analysis

We prove that the amortized time complexity of FlexFlood’s update operation is O(D log N) under
two assumptions. Let X denote the total number of cells, that is, HdD:l g =X.

C.1 Worst Time Complexity of Vector Insertion or Erasion

First, we show that the worst time complexity of vector insertion or erasion is O(log V). Insertion or
erasion of a vector v € R” consists of two steps: (1) identifying the cell that should contain v and
(2) inserting or erasing v for a B-tree within the cell. For (1), for each dimension d € {1,2,..., D},
we can perform a binary search on the set of cell boundary coordinates to determine where v|d]
should be placed. This takes 0(25:1 logz4) = O(log Hle xq) = O(log X). We can do (2)
with worst O(log N) because we only insert or erase v into the B-tree that holds the data in the
identified cell. The total computational cost of inserting or erasing vectors is O(log X + log N).
Here, X < N is considered to be valid unless the learning of the distribution is very unsuccessful.
This is because X > N means that the number of cells is larger than the total number of data, which
is obviously wasteful. Table[I]also shows that this is valid. Therefore, the worst time complexity of
vector insertion or erasion is O(log N).

C.2 Worst Time Complexity of Cell Re-partition

Next, we discuss the worst time complexity of cell re-partition. Since cell re-partition occurs
independently for each axis d € {1,2,..., D}, we consider each axis d independently and sum up
later. We assume the following two conditions.

* The number of data N increases at an approximately constant rate.
e 12,230 24 < DNlog N

We define the first assumption as increasing the number of data by A € [0, 1] per updating query.
From a micro perspective, of course, each update operation either increases or decreases the data count
by one. However, from a macro perspective, we assume that after performing k update operations,
the number of data N can be approximated as N = Ny + kA using the initial number of data V.

We discuss the worst-case time complexity of the “split” operation. An overview of the “split” is
shown in Figure[3] “Split” first inserts empty cells (B-trees) in the appropriate location, and then
distributes the data equally between the old and new cells. We can implement the insertion of empty
cells by simultaneously inserting new z% cells while sliding (at most) X cells that already exist. Thus,

the insertion of empty cells costs O(% + X) = O(X). For the data distribution, the erase from old

B-trees and insert into new B-trees are performed % times in total (Remember the definition of the
“split”. Since A > 0 holds, the “split” occurs when the number of data of the target cells is exactly

sjuswiadx3 uley wouy abuey)d abejuadisd

o o o o
[=} o o o - o~ m <
4 3 2 1 0 _ _ _ _

[I

15 16 1.7 1.8 1.9 2.0 21 22 23 24 25

I A

c @& o % o M o ¥ o v o

o o o o o
JUBIDIR0D PloysauyL dzijenb3/abiaw

<

n

sjuswiadx3y ulep wouy abueyd abejuadiad
n o n

o ~ n ~

o I I I

[
B

o
o

s =w o = 3
— ~ n ~ 1

15 16 1.7 1.8 19 20 21 22 23 24 25

Split Threshold Coefficient

_

N N 1w M ¥ w0
2 o 4 o MM o ¥ o w0
S 5 o 5} o
u

JUaID1J90D ploysauyL azijenb3/abis

- ©
S =]

Split Threshold Coefficient

(b) Normal Distribution Update

(a) Normal Distribution Search

sjuswiadx3 uley wouy abuey) abejusdisd

o o o o
[=} o o o - o~ m <
4 3 2 1 0 _ , _ _

B .

15 1.6 1.7 1.8 1.9 2.0 2.1 22 23 2.4 25

n

n Y 0
S o w0
(=]

N nom
])

= ! n 3
s =% o c M o
o

< ©
o

> =) S o
JUaID1R0) ploysaly) azijenb3/abisy

sjuswiadx3 uley wouy abuey) abejuadisd
o

o o o o — N M <
4 3 2 1 0 | | I I

B .

15 1.6 1.7 1.8 1.9 2.0 2.1 22 23 2.4 25

L T T B B SO SO S W« S
s 4 S N 8 ™S ¥ S o9 g
o o o o

o
JUBIDIYR0D PloysauyL dzijenb3/abiaw

Split Threshold Coefficient

Split Threshold Coefficient

(d) Stock Price Update

(c) Stock Price Search

sjuswiadx3 uley wouy abuey) abejuadisd
o o o

0
o o o o inl N m <
< m ~ — o | | | I

[I

15 1.6 1.7 1.8 1.9 2.0 2.1 22 23 2.4 25

< n

LTS T R T WY, S S, ST, WY, St}
s 3 © 3 °© 2 s I o 2 o

> S) S o)
JUaID14R0) ploysaly) azijenb3/abisy

sjuswiadx3 uley wouy abuey) abejuadisd
o wn o

o n o n — — I
~ — — n o | | | I

B

15 1.6 1.7 1.8 1.9 2.0 2.1 22 23 2.4 25

N
c @& o % o M o ¥ o W
o o o o o

JU31I120D ploysaiyL dzijenb3/ebia

w
S

Split Threshold Coefficient

Split Threshold Coefficient

(f) Open Street Map Update

(e) Open Street Map Search

Heatmaps show percentage changes compared to experimental results in Section@ Blue

squares mean better performance.

Figure 4

18| ol fes|®" e 130 ANE
e [1]3]2 111
]4 P ol ° ‘o. °
N 1 NN LS NN AN N P Insert new cells
16| e e]ao| % o o 0[3]3 2[2]1]1

‘split 11311
2 9 676 7 52 4 1132

Nf=|b|gmblw|o|€m|b|lw|o
N[O lololo]| @ w N
N
N
o
N

18] 1o, '..0 «® o, Distribute data
ot e e —e) [0]3]3 2|2]1]1
ML e s OB 2[2]0]2
16| *e| o e 2l o o | [1]3]2 SHEE

Figure 5: Overview of “split” (D = 3,21 = 8,22 = 3, X = 24, N = 48): The cells outlined in
red are subject to “split” because they contain 13 data in total. This value is larger than the “split”

condition: 2 — = 2. &= = . We insert = = <= = J new cells (B-trees), and distribute the
dition: 2- &£ = 2. 4% = 12. We i X =2-3 11s (B), and distribute the 12

1
data points evenly between the old and new cells, with 6 points in each.

%, and the number of B-tree operations cannot be more than %). Therefore, the time complexity
of operating B-trees for data distribution is O(% log N). Thus, the worst time complexity of the
“split” is O(X + zﬂd log N). Considering the “merge” and the “equalize” in the same way, the worst
time complexities are O(X + % log N), O(z—j\g log N), respectively.

C.3 Amortized Time Complexity of Cell Re-partition

However, under the assumption that N = Ny + kA, we can show that a re-partition occurs at most
once every O() When N = Ny + kA, we insert (HA)]‘ times and erase w times. “Splits”
(1+A)k L xg—2A 2A

1)

due to intensive insertions occur only times at most. This is because the “split
occurs when the number of data in the cell reaches exactly (because A > 0 holds), and once
the “split” is executed, the number of data in the cell is reset t0 2=+ S0, we need - N —S5x consecutive

—9. +W

Zd

). In the same
A-D)k 3Id+A

intensive insertions to execute the “split” again (Check ﬂ + - 2

way, we can say that the “merge” and the “equalize” by 1nten91ve erasion occur only

times at most. Moreover, even for cells that are not erased at all, the number of data in the cell may

reach the threshold of “merge” or “equalize” because IV increases. About this case, we can prove

that the number of computations is maximized when the “merge” or “equalize” occurs immediately

when the number of data reaches the threshold. Therefore, the “merge” and the “equalize” due to

increasing data can occur only x4 - <% times at most. From the above, the upper bound on the
A

number of cell re-partitions that occur after k£ update operations is
cell re-partitioning occurs at most once every M‘% = O(T]\;) times.

E((5+A)zq—3A—5A2) .
N . That is, the

Remember the worst-case complexity of the cell re-partitioning is O(X + % log N). This happens
once every O(év—d) times, so the amortized time complexity of the cell re-partitioning is O(%azd +
log N). Since we have considered each axis d independently, the amortized time complexity of
the overall cell re-partitioning is O(% ZdD:1 xq + Dlog N) by summing them up. Here, from the

10

second assumption [}, 4 >0 24 < DNlog N, £ S°7_ 24 < Dlog N holds. Therefore, it is
proved that the amortized time complexity of the cell re-partitioning is O(D log N).

C.4 Limitation

We proved that the amortized time complexity of the FlexFlood’s update operation is O(D log N)

when N ~ Ny + kA and H§:1 Td 25:1 xq < DN log N are assumed to hold. It remains to be
discussed how realistic these assumptions are. In the real world, data basically tends to increase.
However, for example, there may be cases where periods of rapid data growth alternate with periods
of slower growth on an annual cycle. It is very important to observe how FlexFlood performs in such
cases. If the performance drops significantly, we should develop a hybrid approach that balances these

periods. Furthermore, although Hle Tg ZdD:1 x4y < DN log N always held in our experiment,
it may not hold for some datasets. We should observe how much the update speed decreases due
to the breakdown of this assumption. Furthermore, it would be interesting to identify common
characteristics among datasets where this assumption breaks down.

D Dataset Details

We describe the details of the three dataset used in the experiments. In addition, we also introduce
the method for generating queries.

D.1 Normal Distribution Dataset

Dataset 1 is a Normal Distribution Dataset. We tested D = 3 as the number of dimensions of
the normal distribution. As the initial data, we independently generated 10° data. Each data was
generated independently for each axis according to a normal distribution with = 3 - 108, o = 103,
Note that y is the mean and ¢ is the standard deviation of the normal distribution.

The number of queries we generated is 2 - 105, with an update and search queries alternating every
10* queries. The i-th query is an update query if | 75z] =0 (mod 2), and a search query otherwise.
(Note that |z denotes the largest integer less than or equal to x.)

When we generated search queries, we first generated a hyper-rectangle, a search region. The length
of one side of the hyper-rectangle was independently set to a random value less than 3 - 10%. We
placed that hyper-rectangle uniformly at random inside the hyper-rectangle whose diagonals are
(0,0,0) and (10°,10%,10%), and we used this as a search query.

The update query has a 50% chance of being selected as an insert query and a 50% chance of being
selected as an erase query. We generated the insertion queries according to a normal distribution with
p=3-10% +4-10° - 5755, 0 = 10°® independently for each axis when the query was the i-th from
the first. This simulates the gradual change of the data distribution. We generate deletion queries by

randomly selecting one of the data currently in the data structure.

D.2 Stock Price Dataset

Dataset 2 is the Stock Price Dataset [21]] used by [12]. we tested D = 4 as the number of dimensions.
Of the approximately 2 - 107 of data included in the dataset, we randomly chose 2 - 106 data and used
them. Each data has four attributes: lowest price, highest price, volume, and date.

Out of 2 - 10° data points, we took 2 - 10° with the oldest dates as the initial data. We generated
7.2 - 10° queries, with the search and update query order matching Dataset 1. Hyper-rectangles were
generated randomly for search queries, searching approximately 0.1% of the data per query. Insert
queries were generated by selecting the oldest data not yet in the structure, and erase queries by
selecting the oldest data in the structure. This simulated keeping the last 2 - 10° data points and
evaluated each data structure’s robustness to real-world data distribution shifts over time.

11

w_| — SB-Kdtree / '7;20 i
02| — Retree Qqg 0 00
£ - u S £
= pdatable Flood = =
¢ | — Flood10000 — g10 p40
81l — Flood20000 ~ _—| & E
2 | — FlexFlood (Ours) — 25 2 20
0 0 0
0.00 0.25 0.50 0.75 1.00 0 1 2 3 0.0 0.5 1.0 1.5 2.0
Queries le6 # Queries le6 # Queries le6
(a) Normal Distribution Update (b) Stock Price Update (c) Open Street Map Update
_8 _ 1500
i) w -
26 2 40 <
= = £
= = E 1000
24 g v
8 520 g
© o ® 500
3 2 =) =}
£ £ £
35] 3
O O]
0 0 0
0.00 0.25 0.50 0.75 1.00 0 1 2 3 0.0 0.5 1.0 15 2.0
Queries le6 # Queries le6 # Queries le6
(d) Normal Distribution Search (e) Stock Price Search (f) Open Street Map Search

Figure 6: Experimental results: The upper panel shows the update queries, and the lower panel shows
the results for the search queries. (Lower is better.)

D.3 Open Street Map Dataset

Dataset 3 is the Open Street Map Dataset [9] used by [32]. We tested D = 5 as the number of
dimensions. Of the approximately 10® of data, we randomly extracted 2 - 105 data and used them.
Each data set has five attributes: ID, version, date, latitude, and longitude.

First, we clustered the dataset into two groups of 10% each using K-means, and used one cluster as the
initial data. We generated 2 - 10 queries, with the search and update query order matching Dataset 1.
We generated hyper-rectangles randomly for search queries so that approximately 0.3% of the data
were searched per query. Insert queries were generated by randomly selecting data from the cluster
not selected as the initial data, while erase queries were generated by randomly selecting data from
the initial cluster.

E Re-initialization

There is a delta-buffer method according to the survey paper on learned multi-dimensional indexes [2].
It stores data updating in a small array and periodically merges them with the data structure. We
compare the performance of FlexFlood with that of a delta-buffered version of Flood.

In designing the delta-buffer Flood, it is computationally too expensive to incorporate re-learning
of parameters (sort dimension and the number of cell partitions). In our implementation, learning
the distribution took 32 seconds for the normal distribution dataset, 46 seconds for the Stock Price
dataset, and 138 seconds for the Open Street Map dataset. Since there are about 10° update queries in
our workload, we need to re-learn more than 10? times even if we re-learn every 10* times. The total
re-learning time would then be about 10# seconds ~ 3 hours, which is too long as shown in Figures
Therefore, we adopt the method of re-initializing the data structure without changing the parameters.

In this experiment, we used Flood10000, which re-initializes the entire structure after every 104 data
updates, and used Flood20000 with re-initialization after every 2 - 10* updates, in addition to the four
data structures described in Section[5] As noted in Appendix [D} search queries and update queries
come alternately, 10* each. Thus, Flood10000 is re-initialized for each set of update queries, and
Flood20000 stores the first set of update queries in the buffer and re-initializes after the second set.

Figures [6illustrate the cumulative query processing time for each data structure for each dataset.
Looking at the update query results (Figures|[6a] [6b] [6c), Flood10000 and Flood20000 are slower

12

than all the compared data structures. Especially, both are more than five times slower than FlexFlood.
From this result, the delta buffer Flood is undesirable when there are many update queries.

We then turn our attention to the search query results (Figures[6d] [6¢} [6f). Flood10000 has the fastest
search speed of all data structures. This is because Flood10000 re-initializes every update query
set, so Flood10000 can achieve virtually the same performance as Flood, and the original Flood is
extremely fast, as discussed in Appendix[A] On the other hand, Flood20000 is slower than FlexFlood
for normal distribution dataset and Stock Prices dataset, but achieves a very fast search speed for
Open Street Map dataset. This is likely due to the large amount of data being searched in the Open
Street Map dataset (See Appendix [D). The time spent searching the internal structure of the Flood
has become the rate-limiting step, making the time spent reading from the buffer relatively negligible.

Therefore, delta-buffer Flood is worth considering in situations where an extremely large amount of
data is being searched, or when spending a relatively long time on updates is not an issue. On the
other hand, we believe that FlexFlood excels in scenarios where high update speed is required or
when the amount of data being searched is relatively small.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and Section [T we describe that FlexFlood is the first learned
multi-dimensional index that guarantees that the computational complexity of the update
operation is O(D log N), and that experimentally it outperforms Flood in certain situations.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in Section|/|and Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [Yes]

Justification: We discuss the computational complexity of the proposed method in Section 4]
and Appendix [C]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We introduce Flood, the baseline of the FlexFlood, in Section[3] We also
describe how we modified it to obtain the FlexFlood in Section[3] [In addition, we describe
the details of the dataset in Section [5|and Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We do not provide the open access to the data and code. We believe that
everyone can reproduce the source code and dataset by reading the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section [5]and Appendix [D]provide sufficient experimental detail to understand
the results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section [5] describes the execution environment. You can also see the time
required for the experiment in Section[6|and Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We read the NeurIPS Code of Ethics and conducted our research accordingly.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a foundational study focusing on the data structures, so this paper does
not address the social implications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a foundational study focusing on the data structures, so this paper does
not involve data or models with a high risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:

Justification: In Section[5] most of the assets were properly introduced. However, the license
for the Stock Price Dataset [21]] was “unknown”.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

18

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release the source code.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20

	Introduction
	Related Work
	Preliminary
	Proposed Method: FlexFlood
	Experiment
	Result
	Conclusion
	Sorted Array vs B-tree
	Threshold for Re-partitioning
	Threshold Selection Criteria
	Performance Variation with Thresholds

	Amortized Time Complexity Analysis
	Worst Time Complexity of Vector Insertion or Erasion
	Worst Time Complexity of Cell Re-partition
	Amortized Time Complexity of Cell Re-partition
	Limitation

	Dataset Details
	Normal Distribution Dataset
	Stock Price Dataset
	Open Street Map Dataset

	Re-initialization

