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Abstract

Recent advances in Large Language Models (LLMs) have created new opportuni-
ties for scalable Automated Program Repair (APR). However, an underexplored
aspect of APR is the impact of the surrounding code on patch correctness. We
propose a novel context granularity based on backward static slicing, capturing
lines on which the buggy line is data- and control-dependent. We then evaluate
its performance against five commonly used APR context granularities as well as
state-of-the-art APR systems. Using GPT-4, we assess all six context granularities
on 109 single-line bugs from the Defects4J dataset. Our results show that the
sliced context achieves the highest Correct/Plausible ratio (79%) in the dataset,
suggesting that a more focused context improves the generation of semantically
accurate patches per passed test case. In contrast, larger contexts, such as entire
files, produce more correct patches overall but at a lower ratio. We propose that
future work explore combining smaller, focused contexts like slicing with larger
ones to enhance both semantic accuracy and the total number of correct patches, as
well as investigating context granularity strategies tailored to specific bug types.

1 Introduction

Software systems are pervasive, underpinning critical infrastructure across various industries. How-
ever, these systems remain highly vulnerable to bugs, as demonstrated by software-related failures
such as the Ariane 5 crash [2], Toyota’s unintended acceleration incidents [10], and the Knight Capital
Group trading glitch [21]. The economic impact of these vulnerabilities is also staggering. In 2020,
software defects cost the U.S. economy $2.08 trillion, rising to $2.41 trillion by 2022, according to
the Consortium for Information & Software Quality (CISQ) [4]. As systems become more complex,
Automated Program Repair (APR) has emerged as a promising solution for automatically fixing bugs,
reducing manual effort, and minimizing downtime.

Recent advancements in machine learning, including Large Language Models (LLMs) such as
StarCoder [13] and AST-T5 [5], have introduced scalable approaches to APR by leveraging historical
code changes and large-scale datasets [[7,124,|17]. However, a crucial yet underexplored aspect of both
traditional and learning-based APR methods is the role of context—specifically, the code surrounding
a buggy line—in the success of generated patches [22]].

Studies in natural language processing (NLP) highlight the crucial role of context in the performance
of LLMs across various tasks. Liu et al. [16] show that model performance may degrade when
key information appears in the middle of lengthy contexts. Similarly, Ettinger et al. [19] find that
irrelevant details can negatively impact predictions, as models often rely on semantic similarity and
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word positioning. Despite these insights, how different context granularities impact LLM performance
in APR tasks remains an open question. Here, we define context granularity as the amount of code
surrounding the buggy line that is provided to the repair system.

In this paper, we propose a novel context granularity based on backward static slicing [23]] and
evaluate its performance in generating single-line patches using GPT-4 [18]]. Our study compares this
approach with five traditional context granularities, using the widely adopted Defects4J dataset [8]],
as follows:

* Single-line: the buggy line.

* Fixed: the five lines above and below the buggy line.
* Method: the enclosing method of the buggy line.

* Class: the enclosing class of the buggy line.

* Sliced: the lines that are data- and control-dependent on the buggy line, obtained through
backward static slicing [23].

* File: the entire file that contains the buggy line.

Our findings reveal that while the File context generates the highest number of correct patches, this
increase is minimal compared to the substantial increase in context size. More focused contexts,
such as Method and Sliced, achieve higher semantic accuracy per passed test case, as indicated by
the ratio of Correct patches to Plausible patches. Notably, the S1iced context achieves the highest
Correct/Plausible ratio across all evaluated contexts, even surpassing state-of-the-art systems like
AlphaRepair [24].

Contributions. This paper makes the following contributions:

1. We propose a novel context granularity based on backward static slicing, which retains only
the lines on which the buggy line is data- and control-dependent.

2. We systematically investigate the impact of 6 different context granularities, including the
proposed slicing granularity, on the performance of LLMs in APR tasks.

3. We compare the performance of our slicing granularity and the other five context settings
when used with GPT-4 against state-of-the-art APR techniques.

2 Background

Automated Program Repair is a subfield of software engineering focused on fixing software bugs
with minimal human intervention. Recent advancements have redefined program repair as a Neural
Machine Translation task, in which frameworks such as CURE [7]] and CoCoNut [[17] "translate"
buggy code into corrected code by learning bug-fixing patterns from large code corpora. Building on
this, more recent approaches, including AlphaRepair [24], leverage large language models, such as
GPT and CodeBERT [3], in a zero-shot learning setting. This setup enables patch generation without
extensive fine-tuning.

In contrast, traditional APR methods often rely on rule-based or heuristic-driven strategies to generate
patches. For instance, TBar [[15] and AVATAR [14] use template-based repair, applying common
bug-fixing patterns derived from previous patches. FixMiner [11] builds on this by analyzing large
datasets of historical bug fixes to guide patch generation. GenProg [12]] takes a different approach,
using genetic programming to explore fixes through mutation and crossover operations. While these
methods can produce valid patches, they often depend on templates, heuristics, or exhaustive searches,
which can limit their flexibility in addressing new or complex bugs.

The works most closely related to ours are [22] and [20]. Katana [22] applies control and data flow
analysis to extract context through dual slicing, converts these slices into AST-based graphs, and
employs a Graph Neural Network (GNN) to train an APR model. However, it does not systematically
explore how different context granularities impact LLM performance—a gap our study addresses. The
experiments in [20] examine the role of local context in repair success, investigating factors such as
context length and its placement around the bug by training and evaluating various Transformer-based
models. In contrast, our study systematically examines a broader range of context granularities, from



single-line to full-file. Additionally, we analyze the impact of context on repair success specifically
within the zero-shot setting of APR using LLMs.

2.1 Backward Static Slicing

Backward static slicing is a program analysis technique that identifies all statements in a program
that could influence the value of a specific variable at a given point by tracing control and data
dependencies backward through the program’s control flow graph (CFG). Our implementation
follows the slicing algorithm introduced by Weiser [23]], who likened program slicing to the mental
process programmers use when debugging code. This process begins at the buggy line and traverses
backward through the control flow graph to locate statements that directly or indirectly affect relevant
variables or execution paths. By isolating these critical dependencies, backward static slicing can
greatly simplify the program. Additional slicing techniques that may be used to create new context
granularities are detailed in Appendix

3 Methodology

In this study, we systematically evaluate the impact of different context granularities on the success of
single-line patches generated by an LLM for Automated Program Repair. Our approach formulates
the problem as follows: given a buggy line with a specified context—a token sequence consisting of
the buggy line and surrounding lines—generate an output token sequence that aligns with a ground
truth patch, thereby converting previously failing tests to passing.

We define context granularity as the amount of code surrounding a buggy line that is provided to
the repair system. As previously described, we evaluate six context granularities: Single-line,
Fixed, Method, Class, Sliced, and File. AST parsing using Tree-sitter is employed for context
extraction in all granularities except for File, which includes all lines in the file

We evaluate each context granularity using four key metrics: # Compilable, which counts how
many generated patches adhere to programming syntax; # Plausible, which counts patches that
convert previously failing test cases to passing ones; and # Correct, which counts patches that are
semantically equivalent to the ground truth fix provided by a human developer. Additionally, we use
the Correct/Plausible ratio to assess the semantic accuracy of the patches. A high Correct/Plausible
ratio suggests that the model generates patches that are not only syntactically valid and functionally
correct but also semantically aligned with the intended fix. Conversely, a low ratio may indicate
overfitting, where the model produces patches that pass tests but diverge from the intended logic.
This ratio may be especially useful in applications with limited human intervention, where plausible
but incorrect patches—while they may pass tests—are insufficient.

4 Evaluation

In this section, we evaluate the performance of GPT-4 across different context granularities to answer
the following research questions:

RQ1. Does increasing context length improve precision of LLM-based APR, as measured by the
Correct/Plausible ratio?

RQ2. Is there a correlation between token count and the number of compilable patches?

RQ3. What factors may contribute to the S1iced context achieving the best tradeoff between the
Correct/Plausible ratio and token count?

RQ4. How does the Sliced context compare to state-of-the-art APR systems in terms of the
number of correct patches and Correct/Plausible ratio?

(RQ1) The File context, which has the largest token count (331,383 tokens), generates the highest
number of plausible patches (47) and correct patches (28), as shown in Table E} However, its
Correct/Plausible ratio is modest at 60%, suggesting that although the large context provides more
information, it may also introduce noise. A similar trend is observed for the Class context, which

*https://tree-sitter.github.io/tree-sitter/


https://tree-sitter.github.io/tree-sitter/

Context # Compilable # Plausible # Correct Token Count Correct/Plausible

Single-line 61 23 11 2,070 48%
Fixed 67 34 23 6,554 68%
Method 83 45 25 16,077 56%
Class 78 41 24 281,320 59%
File 71 47 28 331,383 60%
AlphaRepair [24] - 50 36 - 72%
Recoder [25] - 23 11 - 48%
TBar [[15] - 25 8 - 32%
Sliced (Ours) 82 28 22 47,766 79 %

Table 1: Sliced (Ours) achieves the highest Correct/Plausible ratio (79%), outperforming both
smaller contexts (Single-1line, Method) and larger contexts (Class, File). While AlphaRepair
generates more correct patches overall, Sliced produces a higher proportion of correct patches
relative to plausible patches, indicating a higher likelihood of generating plausible patches that are
semantically equivalent to the human developer’s fix. Bold values indicate the best method, and
underlined values indicate the second-best method.

produces 41 plausible patches and 24 correct patches, yielding a Correct/Plausible ratio of 59%. This
aligns with findings from Liu et al. [16] and Ettinger et al. [19], which suggest that irrelevant context
can degrade model performance.

(RQ2) In contrast, smaller context granularities like Method and S1iced outperform larger contexts
in compilability and Correct/Plausible ratios. The Method context (16,077 tokens) generates the
most compilable patches (83), surpassing the File context. The Sliced context, with 47,766
tokens, produces 82 compilable patches and achieves the highest Correct/Plausible ratio (79%), the
highest among all evaluated contexts. Interestingly, the Fixed context achieves the second-highest
Correct/Plausible ratio (68%).

(RQ3) We conjecture that the high Correct/Plausible ratio of the S1iced context is due to two factors.
First, focusing the model’s attention on key dependencies reduces the risk of overfitting on irrelevant
patterns, enabling it to generate more semantically accurate patches. Second, the buggy line is always
positioned at the end of the S1iced context, which may help prevent the model from losing focus
on critical information. Furthermore, the progression in Correct/Plausible ratios—from File to
Sliced—may suggest that retaining code in close proximity to the buggy line, even if not all of it is
directly relevant to control structures or data flows, enhances the model’s ability to produce patches
that are not only compilable but also more aligned with the developer’s intended fix.

(RQ4) When compared to the state-of-the-art system AlphaRepair, which achieves a Correct/Plausible
ratio of 72%, the Sliced context slightly surpasses this benchmark with a ratio of 79%. This
suggests that, despite generating fewer correct patches overall (22), the Sliced context, which
provides smaller, more targeted input, likely reduces noise and ambiguity, increasing the likelihood
that plausible patches are also semantically equivalent to the developer’s intended fix.

5 Future Work

Future work could explore hybrid strategies that combine the specificity of smaller contexts (e.g.,
Sliced and Method) with the broader scope of larger contexts (e.g., File) to improve both the
Correct/Plausible ratio and the total number of correct patches. It may also be useful to tailor context
strategies to specific bug types, with simpler bugs potentially benefiting from focused contexts and
more complex bugs requiring broader scopes. Additionally, the impact of context granularities based
on forward or dynamic slicing could be investigated.

Furthermore, we plan to test the generality of our technique across diverse benchmarks, encompassing
various bug types, programming languages, and paradigms such as object-oriented and functional
programming. Additionally, a thorough evaluation of latency and resource consumption will help
determine whether the complex control flow graph computations required for backward slicing are
feasible for real-time applications.
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A Implementation Details

The implementation was developed in Python, using the Tree-sitter library to parse Java code and
extract its AST. This approach can be adapted to other programming languages by updating the AST
generator. We constructed the CFG from scratch, with the AST serving as the basis for identifying
nodes and edges that represent control flow between different statements and blocks.

Once the context is extracted, the model prompt is generated in the following format:
Buggy line: [insert buggy line] Context: [insert extracted context]

Please generate the fixed buggy line only. Do not add any additional comments.

B Additional Slicing Techniques

In this paper, we evaluate a novel context granularity based on backward static slicing. Other slicing
techniques offer different insights into program behavior. Forward slicing identifies all program
statements that may be affected by changes to a specific variable or statement at a given point in the
code [6l]. Dynamic slicing, in comparison to static slicing, focuses on a specific execution trace [[1]].
It identifies statements influencing a variable’s value for a particular execution run, offering greater
precision but reduced generalizability due to its reliance on test inputs for trace generation. Symbolic
execution, another analysis technique, explores program paths by treating variables as symbolic
values, enabling reasoning about the conditions under which specific paths are taken [9]].
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