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Abstract

Recent advancements in Large Language Models (LLMs) for Generative AI have
significantly increased their popularity, resulting in an exponential arise of new
close and open LLM models with frequent algorithm updates. Hence, the typical
approach of running and learning to define the optimal configuration starts to
be unpractical due to the large combinatorial problem and shortage/cost of GPU
resources, which creates the necessity for predictive performance models. Given
that, we propose a new LLM performance prediction model that can be leveraged
for optimal cluster management. The novelty of our approach is the combination
of an analytical Roofline Model (RLM) specific for LLM implementation and
based on the hardware characteristic with data from Regression Models trained
with historical data. More specifically, our approach calibrates the theoretical
hardware performance given from RLM with inherent runtime overhead captured by
Regression Models, offering a more interpretable and accurate prediction method in
cloud-based deployments. We validate our method for vLLM and Triton inference
servers, demonstrating that our approach improves the R2 value by 12% and
reduces MSE by up to 80% on vLLM, and improves the R2 value by 4% and
reduces MSE by up to 61% on Triton, compared to other regression-only models.

1 Introduction

Improvements in large language models (LLMs) have significantly expanded their capabilities,
making them paramount across various applications in recent years(1; 2; 3). However, deploying
these models at scale presents challenges, particularly in optimizing their inference latency. Efficient
serving of LLMs with system-level enhancements has therefore become a critical research area
(4; 5; 6), driving innovations in memory management (7; 8; 9; 10), computational optimization
(11; 12; 13; 14; 15), and recently, efficient cloud deployment strategies (16; 17; 18). Given the
frequent introduction of new models and architectures, measuring the performance of each LLM via
experiment under all possible conditions is too resource-intensive and time-consuming. Therefore,
an accurate and efficient performance model that predicts LLM latency based on minimal execution
parameters becomes necessary for optimal application’s resource allocation strategies. Related
works such as (13; 16; 19) primarily aim to improve system-level performance through optimizing
scheduling, energy efficiency, and model parallelism. While effective, these methods target specific
optimization strategies without a unified performance prediction framework. Our approach aligns
most closely with (20), which also provides high-fidelity latency predictions. However, we build
upon this by integrating theoretical modeling with real-time execution data, enabling more accurate
and efficient resource allocation without extensive simulations.
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The motivation for using the Roofline Model (RLM) in our work is its established ability to offer an
analytical framework that balances computational throughput and memory bandwidth (21). RLM
provides an interpretable performance ceiling for hardware systems, making it an ideal candidate
for predicting LLM inference latency. While it has been applied successfully to hardware systems
like CPUs, GPUs, and TPUs (22; 23; 24; 25), its extension to LLM inference remains relatively
unexplored. However, RLM alone lacks critical runtime information, such as the variability introduced
by cloud infrastructure and dynamic workloads, which leads to performance overestimation and
sub-optimal predictions in LLM inference scenarios (26).

In this paper, we address these limitations by proposing a novel LLM end-to-end inference latency
prediction method. Our approach combines the theoretical hardware RLM with runtime characteristics
from regression model trained with historical data to create an interpretable model that reflects actual
execution conditions in the cloud environments. We deploy this scheme in vLLM (27) and Triton
(28), to validate proposed model effectiveness. The contributions of this work are as follows:

1. We introduce an end-to-end latency prediction method that is both theoretical and grounded
in real-world execution data, resulting in a substantial increase in the R2 values and signifi-
cant reduction in the MSE on vLLM and Triton inference servers.

2. We validate the effectiveness of our method by evaluating it across several open-source
LLMs from Hugging Face, deployed in vLLM and Triton along with a set of experiments in
our own cluster.

2 Latency Prediction Method

The goal of our work is to train a LLM inference latency prediction model with both collected data
from real-world experiments and theoretical performance data from Roofline models, which will show
that can outperform the inference latency prediction of those data in isolation. Our data collection
procedure is described in Section 2.2 and the method of collecting analytical inference time informed
by the RLM is described in 2.3.

2.1 Selected Models and Model Feature Extraction

In this work, we focused on LLMs that are optimized for deployment within a single GPU environment
to evaluate the effectiveness of our framework while minimizing external factors. The target LLMs
represent a diverse range of architectures, allowing us to evaluate the inference latency across varying
architectural factors, rather than focusing solely on parameter size. The four LLMs chosen from
Hugging Face are: microsoft/phi-2 (29), facebook/opt-1.3b (30), EleutherAI/pythia-1.4b (31),
and openai-community/gpt2-xl (32). For each LLM, we extracted 9 key features from the model’s
configuration file on Hugging Face (33; 34; 35; 36) (LLM feature table is in the Appendix A.1):

When training the model, we use categorical features: (i) model name, (ii) architecture, (iii) model
type, (iv) hidden act, and numerical features: (v) # of parameters, (vi) hidden size, (vii) # of heads,
(viii) # of layers and (ix) vocabulary size.

2.2 Execution Latency Data Collection Procedure

To collect LLM inference latency data, we conducted experiments on vLLM and Triton. Note
that Triton supports multiple backends and we used a vLLM backend for Triton server (37). Our
primary objective was to analyze the impact of user concurrency and generation length on latency. To
this end, in our experiments, we varied the number of concurrent users (8, 16, 32) and generation
lengths (32, 64, 128 tokens) during the inference, using a fixed generation prompt: “What is artificial
intelligence?”. These were single-pass, non-multiturn experiments iterated for three times for each
set on an OpenShift cluster with a single NVIDIA A100 GPU.

To simulate real-world usage scenarios and capture latency data, we employed Locust (38) for load
testing. Each experiment ran for 5 minutes, allowing us to capture the system’s behavior under
sustained load. This ensured that the hardware was fully utilized. The reported latency values are
the average of these three runs, as we observed minimal variation across repetitions with identical
setups. With these experiments, we collected three operational parameters and an execution latency
in milliseconds: (i) number of users, (ii) generation lengths, and (iii) average content size in MB.
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2.3 Integration of the Roofline model

The Roofline model provides an analytical approach to estimate the theoretical inference latency,
which is calculated by the formula introduced in the Appendix A.2. Therefore, by using the LLM-
Viewer (26), which applies the Roofline model to estimate the inference latency of a chosen LLM and
hardware, based on the input length, batch size, and generation length, we collected the theoretical
analytical latency data for different number of users, and generation lengths as described in 2.2.
Although the LLM-Viewer tool supports only a subset of LLMs (e.g., opt-1.3b), we extended the
open-source codebase to incorporate three additional LLMs of our interest. In our performance
modeling in Section 3, we incorporate this analytically estimated latency as an additional feature to
improve the accuracy of our execution latency predictions.

3 Modeling Results

In this section, we present the results of our inference latency prediction models, applying the default
configurations of Random Forest (RF), XGBoost (XGB), and Linear Regression (LR) from scikit-
learn (39), without any fine-tuning. We evaluate the performance of the models in two scenarios:
out-of-domain (OOD) prediction, where the target LLM was excluded from the training data, and
in-domain (ID) prediction, where the model was trained for a single LLM. In OOD, we assess how
well our models generalize to unseen LLMs by predicting the inference latency of the LLMs that were
not included in the training set. The Roofline Model (RLM) explores ID predictions and incorporates
Roofline performance features to improve prediction accuracy. We report only the best results for
each LLM, while the full results are provided in Appendix A.3 for reference.

Table 1: Comparison of R2, MSE, and Method for different LLMs (RF, XGB, LR) across vLLM and
Triton inference servers for OOD, ID, and RLM predictions.

OOD ID RLM

Server Model R2 ↑ MSE ↓ Method R2 ↑ MSE ↓ Method R2 ↑ MSE ↓ Method

opt 0.903 11748 LR 0.800 24282 LR 0.974 3163 LR
vLLM phi 0.908 18580 XGB 0.805 39215 LR 0.987 2535 LR

pythia 0.950 5840 XGB 0.929 8157 LR 0.985 1687 LR
gpt2 0.724 58505 XGB 0.917 17527 LR 0.951 10384 LR

opt 0.961 12374 XGB 0.940 19463 LR 0.986 4538 LR
Triton phi 0.974 8878 RF 0.919 27314 LR 0.987 4392 LR

pythia 0.859 41883 LR 0.966 10115 LR 0.995 1458 LR
gpt2 0.454 415931 XGB 0.948 39675 LR 0.965 26326 LR

3.1 Out of domain prediction (OOD)

In the OOD prediction task, the models were trained on a set of 9 LLM features and 3 operational
parameters (as described in 2.1 and 2.2). This configuration allowed us to evaluate how well the
models generalize to unseen systems. The left most column in Table 1 shows the results of OOD
prediction. We can see that the models achieve strong generalization for three out of four LLMs,
with R2 values exceeding 0.85. However, for gpt2 the prediction accuracy was lower with R2 value
of 0.724 for vLLM and 0.454 for Triton. To understand what contributed to this reduced accuracy,
we compared the total number of operations (OPs) across the LLMs. Using the LLM-Viewer, we
calculated the average number of OPs for all 9 configurations. The results showed that the gpt2 had
the least OPs, averaging 6.4× 1012 which is substantially smaller than 1.04 ∼ 1.61× 1013 for the
other LLMs. This discrepancy is likely due to its small hidden size of 1600, which may explain the
lower effectiveness of the OOD method.

3.2 In domain prediction (ID)

In this task, the models were trained and tested on data from a single LLM. Given that the LLM’s
architecture remained constant, we focused on the impact of the operational parameters, as described
in 2.2. Each model was trained on a dataset comprising 9 configurations across varying numbers of
concurrent users and generation lengths. Due to the small sample size, we used 3-fold cross validation

3



to evaluate our models. Despite the small dataset, all four models deployed in two different servers
achieved an R2 value exceeding 0.8, suggesting that the performance modeling with a limited data
points are feasible. In contrast to the OOD results where the best modeling method depended on the
LLM, the ID results suggest that there is a linear relationship between the operational parameters and
inference latency.

3.3 Incorporation of the Roofline model (RLM)

By incorporating the Roofline-based analytical latency estimates as features, we were able to capture
key computational and memory hardware bottlenecks that were previously unaccounted for in the
model. Incorporating the analytical latency led to a significant increase in R2 values for most models,
with the R2 score for the opt model on vLLM server increased by 17 points, and the MSE error was
reduced by 87%, compared to the ID prediction. Note that the dataset set size remained consistent
with the ID prediction, with the only change being the inclusion of the analytical inference latency.

Similar to the trend seen in ID, the results incorporating the Roofline model shows that LR was the
most effective method for capturing inference latency. We believe that the LR worked well since the
Roofline model addresses the two bottlenecks out of the three performance bottlenecks, which are
compute bound and memory bandwidth bound (40). The LR effectively models the third bottleneck,
the overhead bound, by introducing a constant into the model.

Figure 1: Scatter Plot of Aver-
age R2 vs. Average MSE

Overall performance comparison Figure 1 shows the average R2

and MSE scores across the three prediction approaches for vLLM
and Triton inference servers. On average, the inclusion of the
Roofline model led to a 12.93% and 4.25% improvement in R2

compared ID prediction for vLLM and Triton, respectively. Addi-
tionally, the RLM approach resulted in MSE reductions of 80.08%
and 61.98%, relative to ID prediction for vLLM and Triton, respec-
tively. As evident in the figure, the RLM models are substantially
closer to the ideal prediction, represented by a star.

Lastly, we verified that our latency inference modeling was not lim-
ited by memory bound operations and that our solution remains
applicable regardless of arithmetic intensity. This is crucial because
theoretically, if the operation is memory bound, performance can
be captured easily by a linear regression model. To ensure this, we
analyzed the operational characteristics of each model at the layer
level using LLM-Viewer (26), which determined whether an oper-
ation was compute bound or memory bound based on its arithmetic
intensity. We then calculated a ratio reflecting the proportion of
compute-bound operations for the entire model. The average ratio
across different configurations, such as sequence length and number

of users, exceeded 19.5% for all LLMs. This suggests that even for compute bound operations, where
the performance is limited by the maximum computational throughput, the RLM model is capable of
accurately predicting inference latency.

4 Conclusion

In this paper, we proposed a method for predicting LLM inference latency by integrating the
Roofline model with LR. Our findings provide evidence that this approach significantly improves the
accuracy of predictions by capturing the key performance bottlenecks and runtime overhead effects.
Specifically, our proposed method led to an increase in the R2 value by 12% and reduces MSE by up
to 80% on vLLM inference server. On the Triton inference server, we observe a 4% improvement
in R2 and a 61% reduction in MSE, compared to prediction made without incorporating analytical
inference time.
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A Appendix / supplemental material

A.1 Model Characteristics from Hugging Face

Table 2: Model Specifications

Model Hidden Size Hidden Act Model Type N Head N Layer Vocab Size Architecture # of Params
opt-1.3b 2048 relu opt 32 24 50272 OPTForCausalLM 1.3B

phi-2 2560 gelu_new phi 32 32 51200 PhiForCausalLM 2.7B
pythia-1.4b 2048 gelu gpt_neox 16 24 50304 GPTNeoXForCausalLM 1.4B

gpt2-xl 1600 gelu_new gpt2 25 48 50257 GPT2LMHeadModel 1.6B

A.2 The Roofline Details Explanation

The Roofline model provides a framework for analyzing performance by relating the computational
capability of hardware (in terms of operations per second) to the bandwidth of memory access. It
allows us to estimate the upper bound of performance, given a specific Arithmetic Intensity (AI),
which is the ratio of computational work to memory access.

The ratio of operations (OPs) to memory access determines AI:

AI =
OPs

memory_access
(1)

where OPs refers to the number of operations required for a given task and memory_access refers to
the volume of data transfers (e.g., fetching weights and activations from memory)

The performance is limited either by the bandwidth of memory access or by the maximum achievable
computational throughput (max_OPS)

performance =

{
AI × bandwidth, if AI < max_OPS

bandwidth
max_OPS, otherwise

(2)

where bandwidth refers to the rate of data transfer between memory and computation (in bytes/second)
and max_OPS refers to the peak computational throughput of the hardware (in operations per second)

Once the performance has been determined based on the Roofline model, the inference time for each
operation or layer can be calculated as:

inference_time =
OPs

performance
(3)

The total inference time for an LLM consists of two phases: prefill and decode phase. The total
inference time can be computed as the sum of the inference times across both phases, as follows:

total_inference_time =

Lprefill∑
l=1

inference_timeprefill
l


+

prompt_len+gen_len∑
i=prompt_len

(
Ldecode∑
l=1

inference_timedecode
l

)
(4)

With the Roofline model, we can calculate an analytical inference latency of LLMs by considering
both the computational intensity and the memory bandwidth limitations of the hardware.
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A.3 Other results and insights

A.3.1 Out of domain prediction results

Table 3: Comparison of R2 and MSE values for different models (RF, XGB, LR) across vLLM and
Triton inference servers for out-of-domain prediction

RF XGB LR

Server Models R2 ↑ MSE ↓ R2 ↑ MSE ↓ R2 ↑ MSE ↓
opt-1.3b 0.5634 53002.1716 0.5443 55316.8348 0.9032 11748.1579

vLLM phi-2 0.8196 36213.6210 0.9075 18579.6461 -5.8300e+19 1.1700e+25
pythia-1.4b 0.7550 28312.9495 0.9495 5839.8439 0.9301 8074.4466
gpt2-xl 0.6646 71209.9622 0.7244 58505.1173 0.4514 116453.0214

opt-1.3b 0.9501 16218.3881 0.9619 12374.4824 0.7337 86492.8719
Triton phi-2 0.9737 8878.4013 0.0139 332776.3625 -5.4100e+20 1.8300e+26

pythia-1.4b 0.7385 77716.5185 0.8148 55042.1667 0.8591 41883.3045
gpt2-xl 0.4037 454333.7655 0.4541 415930.6822 0.0316 737786.5246

A.3.2 In domain prediction results

Table 4: Comparison of R2 and MSE values for different models (RF, XGB, LR) for vLLM inference
server for in-domain prediction

RF XGB LR

Server Models R2 ↑ MSE ↓ R2 ↑ MSE ↓ R2 ↑ MSE ↓
opt-1.3b 0.6918 37411.8021 0.4699 64352.5602 0.7999 24282.4593

vLLM phi-2 0.7129 57648.6761 0.7060 59023.7664 0.8047 39214.7970
pythia-1.4b 0.6957 35171.0402 0.7044 34163.1720 0.9294 8156.7246
gpt2-xl 0.6549 73258.4546 0.6734 69330.7897 0.9174 17527.0093

opt-1.3b 0.7543 79799.7556 0.7764 72625.4403 0.9401 19462.7767
Triton phi-2 0.7560 82356.7808 0.7977 68281.4014 0.9191 27313.6654

pythia-1.4b 0.8127 55658.6728 0.8958 30984.7781 0.9660 10115.2553
gpt2-xl 0.7747 171658.8409 0.8822 89769.1954 0.9479 39674.8095

A.3.3 Prediction with the Roofline Model

Table 5: Comparison of R2 and MSE values for different models (RF, XGB, LR) for vLLM and
Triton inference servers using the Roofline Model

RF XGB LR

Server Models R2 ↑ MSE ↓ R2 ↑ MSE ↓ R2 ↑ MSE ↓
opt-1.3b 0.6687 40213.3071 0.7380 31809.8520 0.9739 3162.5134

vLLM phi-2 0.7121 57808.1003 0.7127 57684.2802 0.9874 2535.0774
pythia-1.4b 0.7146 32989.3233 0.7044 34160.2992 0.9854 1686.5280
gpt2-xl 0.6781 68339.6833 0.7422 54729.6965 0.9511 10384.2784

opt-1.3b 0.7608 77701.6086 0.8115 61211.0672 0.9860 4537.5362
Triton phi-2 0.7723 76857.4284 0.7976 68305.0763 0.9870 4391.8022

pythia-1.4b 0.8087 56873.4912 0.8997 29808.2705 0.9951 1458.1791
gpt2-xl 0.7813 166590.8172 0.9059 71672.1134 0.9654 26326.0134
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Figure 2: Predicted vs Actual Latency for phi-
2 on vLLM

Figure 3: Predicted vs Actual Latency for
gpt2-xl on Triton

A.3.4 Predicted vs Actual Latency plots with the Roofline Model

A.4 Limitation

Our work fixed the generation length from LLM to 32, 64 and 128 tokens for the purpose of modeling
the inference latency. In practical application, however, the generation length is not predetermined,
and varies depending on the nature of the task and input. To accurately model the inference latency
in real world scenarios, we must consider predicting the generation length based on the input prompt
(41; 42; 43).

Another limitation is that our study did not incorporate inflight batching for Triton Inference Server.
Inflight batching can aggregate multiple requests into a single batch for more efficient processing and
this could reduce latency.

A.5 Future work

Our focus was on evaluating the effectiveness of our approach, so we limited our study to smaller-
sized language models, though larger 7B models could also be run on a single A100 GPU. Future
work should extend this analysis to include these larger models, as they are increasingly common
in practical applications and offer additional insights into the latency scaling with model size.
Furthermore, testing across different hardware configurations, such as more powerful or specialized
GPUs, TPUs, or Multi-Instance GPUs, could provide deeper insights into scalability and performance
for different inference strategies.

Additionally, future work could examine the impact of tensor parallelism and alternative deployment
strategies on inference latency. Exploring different optimization strategies could provide a more
robust understanding of how to achieve efficient, low-latency inference in diverse settings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe that our abstract and introduction of the paper clearly delivers the
contributions, scope and motivation of the problem.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Due to the tight page constraint, we have addressed the limitation of our paper
in the Appendix, along with potential future work to mitigate these limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The theoretical inference latency derivation using the Roofline model is
provided in the Appendix, as it is not part of our original contribution.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the LLMs and servers we tested are open-source and we have provided a
detailed methodology in the paper to ensure reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the code along with detailed instructions for reproducibility
after the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described the dataset and training details for each prediction methods
in the paper. The accompanying code provides full details on our modeling and prediction
methods.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our work did not include any confidence tests or experiments to demonstrate
statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As indicated in the paper, we conducted all experiments on a single NVIDIA
A100 GPU within an OpenShift cluster, with each experiment running for 5 minutes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work did not involve any human subjects, and the datasets used are
publicly available on Hugging Face. We believe that sharing the latency dataset collected
from our experiments poses no risk of harm and does not lead to discrimination against any
specific population.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: The proposed method is expected to have a positive social impact on en-
vironmental sustainability through the optimization of cloud resource usage. However,
incorrect latency predictions could result in negative social consequences. To address this,
implementing safeguards and an iterative logic to continuously improve prediction accuracy
is essential to mitigate potential drawbacks.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not anticipate any direct risks associated with our work. While LLMs
are generally susceptible to generating harmful content or spreading misinformation, these
concerns fall outside the scope of our work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited all the papers, code, data, and models used in our work and included
links in the paper to access these resources for review.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We will release the code after the paper is accepted.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work did not involve crowdsourcing or research involving human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: Our work did not involve crowdsourcing or research involving human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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