
Mycroft: Towards Effective and Efficient External
Data Augmentation

Zain Sarwar∗, Van Tran∗, Arjun Nitin Bhagoji∗, Nick Feamster, Ben Y. Zhao
University of Chicago

{zsarwar, tranv, abhagoji, feamster, ravenben}@uchicago.edu

Supriyo Chakraborty
Capital One

supriyo.chakraborty@capitalone.com

Abstract

In data-scarce domains like networked systems, external data augmentation may
often be necessary to improve training data quality, as model trainers usually only
have visibility into limited portions of the underlying data distribution. However,
relevant data is often privately owned, making it both difficult and expensive
for trainers to identify and acquire the needed training data. In this study, we
introduce Mycroft, a data-efficient approach that allows model trainers to evaluate
the utility of private data from various owners while operating under a limited
data-sharing budget. Mycroft leverages feature space distances to identify small,
high-utility data subsets from each data owner, which serve as indicators of the
overall dataset’s utility. In domains with differentiable models, Mycroft can
effectively apply gradient matching techniques to identify these valuable data
subsets. Our experiments, including novel threat detection in IoT networks and
image classification in the vision domain, show that Mycroft quickly reaches
performance levels comparable to the baseline where all the data is shared.

1 Introduction

In data-scarce domains like networked systems, model trainers often face limited access to diverse,
representative training data. Public datasets are typically narrow in scope [1], and network data owned
by private entities is rarely shared due to privacy concerns. Additionally, acquiring data from private
sources generally requires formal agreements and compensation, making external data both costly
and challenging to obtain. Therefore, model trainers must carefully select data providers whose data
aligns with their needs, while data owners should share only the data necessary to optimize utility and
minimize privacy risks. The key question our paper answers is: How can a model trainer determine if
the data owned by a third party is useful to them without acquiring all of it? We propose Mycroft,
a data sharing framework to address this challenge. Our framework operates in three broad steps: (1)
the model trainer transmits some information about the task their model is not performing well on,
typically in the form of data samples; (2) the data owners then use an algorithm to identify, using
(1), a small but meaningful subset of their data that provides evidence of its utility (or lack thereof);
and (3) the model trainer then evaluates the utility of the provided subset on their task, and decides,
which, if any, of the data owners to acquire data from. The key technical challenge(§3) we solve in
this paper lies in Step (2), where each data owner must find the most “relevant” training data with
respect to the model trainer’s transmitted data samples that may not be i.i.d. with their training data.

*These authors contributed equally to this work

Machine Learning for Systems Workshop at (NeurIPS 2024).

Our experimental results(§5) show that Mycroft outperforms random sampling methods and rapidly
converges to the performance of the full data sharing setting while using a much smaller data budget,
especially for IoT data. This means that model trainers can acquire useful network attack data with
minimal overheads.

2 Problem Formulation and Notation

We consider a setting where there is a model trainer (MT) and m data owners (DOs). MT has trained a
model MMT on its own dataset DMT and is aiming to improve their performance on test data Dtest

via external data augmentation. The performance of MT’s model on Dtest is measured with respect
to some task. In this paper, we assume that the task is supervised learning. We then posit that there
exists a subset Dhard of Dtest on which MT is aiming to improve their performance, leading them to
use external data augmentation. Each DO has a dataset Di which could aid MT in improving their
performance on Dhard. However, the DOs do not share all of their data with MT. Rather, they share
a small subset Duseful of up to size k, which we call the budget. Moreover, the MT does not share
MMT with the DO. If Duseful is able to improve the performance of MT’s model, then MT and DO could
potentially enter into a data-sharing agreement for additional data acquisition. This paper focuses on
how each DO can identify Duseful and subsequently, how MT can utilize this data or rank several DOs.
Each DO’s task is then:

Definition 2.1 (Task for each DO). Find Duseful
i ⊆ Di such that |Duseful

i | ≤ k and L(Dhard,M ′
MT) ≤

L(Dhard,MMT), where MMT = TRAIN(DMT) and M ′
MT = TRAIN(DMT ∪Duseful

i).

3 Mycroft: Identifying and sharing useful data

Algorithm 1 Mycroft

Require: MMT, Dtest, DO’s loss function LDO, DOi’s dataset Di, Budget k,
1: Dhard ← TEST(Dtest,MMT)
2: Send Dhard to the DOs
3: Duseful

i ← DOi runs DataSelect ▷ DataSelect calls FeatureSimilarity 2 or OMP 3
4: M ′

MT = TRAIN(DMT ∪Duseful
i). depending on whether LDO is differentiable

Overview of approach: The overall approach is described in Algorithm 1. After the Dhard is
identified, a small subset is sent to DOs while the rest is reserved for testing. The key technical
challenge we address in this section is that of designing the subroutine DataSelect. Our first
approach uses feature similarity in the raw data space or feature space of a deep neural network
(DNN) whereas our second approach uses gradient similarity in the model space of a DNN to find
functionally similar samples to Dhard.

3.1 Approach 1 : Feature Similarity

Intuitively, data samples that are similar to samples from Dhard would be useful for the MT. Given a
good feature extractor ϕ(·) that maps a sample xj to its feature representation ϕ(xj), we compute
the distances of each sample in Dhard to each sample in Di and construct Duseful

i by using a greedy
heuristic which selects the top-k samples having the minimum distance to Dhard samples. (see
Algorithm 2). The choice of feature representations ϕ(·) and distance function d(·, ·) is contingent
on the domain of the data. For the IoT dataset, we use our ExtractBinningFeatures algorithm
(Appendix 4) whereas for the image datasets, we use L2 distances in the feature space of Unicom [3].

3.2 Approach 2 : Loss Gradient Similarity

We consider the approach of selecting data from Di that is similar in a loss gradient space to Dhard.
For models trained with a differentiable loss function, the gradient of the loss with respect to a
model’s parameters at each sample indicates how it impacted the model during training. Samples
with similar gradients are functionally similar. We formulate the problem of finding Duseful

i as that of
obtaining a k-sparse weight vector w over Di, with the weight assigned to each sample corresponding

2

(a) CDF of MT’s F1 score after data sharing.
Mycroft outperforms random-sampling in a bud-
get matched setting.

(b) CDF of Duseful
i required for random-sampling

and Mycroft to match full-informationN = 474
cases where sharing data is helpful.

Figure 1: Performance of Mycroft, random-sampling and full-information on the IoT dataset.
to its utility. This formulation is inspired by [20], who use it for dataset compression. To find the
optimal 1− eγ * k-sparse w, we: (1) find the averaged gradient of the loss L computed on Dhard with
respect to the parameters θi of Mi (denoted ∇θiL(D

hard)); (2) compute the gradient of the loss L
computed on each sample zj ∈ Di with respect to the parameters θi of Mi; (3) solve the following
regularized optimization problem:

min
∥w∥0≤k

eλ(w) = min
∥w∥0≤k

∥∥∥∥∥∥
∑

zj∈Di

wj∇θiL(zj)−∇θiL(D
hard)

∥∥∥∥∥∥+ λ ∥w∥22 . (1)

The ℓ0-“norm” constraint on w enforces sparsity but leads to an NP-hard problem. To tackle this
issue, we can use a greedy algorithm, Orthogonal Matching Pursuit (OMP) [28], to find a close
approximation due to the sub-modularity of eλ(w) [9] *. We detail OMP in Algorithm 3.

We also develop an approach which unifies feature similarity and loss gradient similarity. We explain
it further along with its proof of optimality in Appendix B.

4 Experimental Setup

We evaluate Mycroft on classification tasks over two domains: network traffic classification and
computer vision. We use 5 datasets for the latter and a tabular dataset for the former representing
flow features of network traffic. Further details are in Appendix D.

Tabular dataset: The networking dataset is sourced from the IoT-23 dataset [14]. To address
privacy concerns, MTs and DOs only share derived tabular features of their network traffic flows, rather
than raw data. The MT selects DOs to improve its detection of malicious traffic. We evaluate 665
combinations of MTs, DOs, and attack types for a thorough analysis.

Image datasets:

• Food datasets: We use three datasets from the food computing domain: Food-101 [4], UPMC
Food-101 [32] and ISIA Food-500 [32]. We assign Food-101 to be the MT’s dataset and UPMC
Food-101 and ISIA Food-500 as datasets of two DOs.

• Dog datasets: We use two datasets for dog breed classification: Imagenet-Dogs [8] (MT) and
Tsinghua-Dogs [36] (DO).

• Dogs & Wolves: We curate a dataset of Dogs & Wolves which contains spurious correlations
called Dogs & Wolves - Spurious (MT). However, the MT’s model performs poorly on data which
does not contain the spurious correlations called Dogs & Wolves - Natural (DO). An illustration of
this dataset is provided in Appendix 4.

*γ is the regularized maximum norm of the gradient of the loss function and the proof of the optimality is in
[20]

*This use of OMP is inspired by [20], who use it for dataset compression during training.

3

Food-101 - UPMC Food-101 - ISIA500 Imagenet - Tsinghua Dogs & Wolves - Spurious -
Dogs & Wolves - Natural

Budget k Mycroft random-
sampling Mycroft random-

sampling Mycroft random-
sampling Mycroft random-

sampling

8 0.42 0.36 0.33 0.18 0.43 0.31 0.44 0.13
16 0.50 0.38 0.48 0.33 0.62 0.48 0.50 0.13
32 0.61 0.47 0.54 0.40 0.70 0.56 0.75 0.25
64 0.75 0.64 0.72 0.61 NA NA 0.75 0.25
128 0.86 0.72 0.83 0.70 NA NA 0.88 0.38

Table 1: Accuracy of M ′
MT with varying budgets of Duseful

i . full-information results in 100%
accuracy on Dhard. Column headers indicate the MT and DO datasets separated by hyphens.

Models: For the IoT dataset, we use Decision Trees, XGBoost and Random Forests. For the image
datasets, all our experiments use ResNet50 [16] models pre-trained on Imagenet. For feature similarity
matching for image data, we use the feature space of Unicom [3]. Appendix D.2 contains details for
the training procedure.

Metrics, Baselines & Evaluation setup: We use F1 score for the IoT dataset (due to class imbalance)
for Dhard and report classification accuracy for the image datasets. Our baseline techniques are
random-sampling, which uses class label knowledge, and full-information. Random sampling
has proven effective for dataset compression [25, 15, 26, 21], while full-information often
provides the upper bound on data utility.

5 Results

For the IoT data, we use only feature similarity since loss gradient similarity cannot be applied, while
for image data, we apply gradient similarity with a minor contribution from feature similarity.

IoT Dataset: From Fig 1a, we see that Duseful
i budget of 5 samples retrieved using Mycroft

outperforms Duseful
i of 100 samples selected by random-sampling. Furthermore, if the Duseful

i
budget doubles until it reaches full-information performance (Fig 1b), Mycroft reaches the
full-information performance using a smaller Duseful

i budget compared to random-sampling.
This shows Mycroft can help the data owner to efficiently identify relevant data sources for intrusion
detection. More results are in Appendix E.

Image Datasets: We present results for the image datasets Table 1 and make three key observations.
First, we can see that Mycroft outperforms random-sampling at all budgets of Duseful

i . Secondly,
we note that Mycroft can rapidly converge to the full-information setting using only a fraction
of the dataset. Finally, the performance gap between random-sampling and Mycroft for the Dogs
& Wolves dataset highlights that when a DO has a very small subset of data useful for the MT, Mycroft
can retrieve that subset very efficiently. We also present results for the situation where the DO has
corrupted data, noisy labels or when multiple DOs need to be ranked in Appendix F.

6 Discussion and Related Work

Related Work: Several studies have explored improving training data quality by using existing
datasets through techniques like image overlay, random erasure, and generative models to generate
new samples [18, 34, 7, 31, 17, 11, 18, 19]. However, these methods can fall short if the available
training data is insufficient for training a generative model, or if certain distributions are significantly
underrepresented in the data. To address this, research has focused on sourcing data from publicly
available data lakes [27, 5, 33, 10, 30, 35, 6, 12, 13]. However, these studies do not address the
challenge of acquiring data from private entities, where data-sharing restrictions are much stricter.
Another related area of research [22, 23, 15] focuses on creating "coresets"—subsets of data that
can approximate the cost function for the entire dataset. However, our study is not concerned with
approximating the entire dataset but rather finding a small subset of the data which will be useful for
some specific tasks. Therefore, these methods are not applicable to our research.

Limitations: In certain cases, model trainers may not be willing to share even small subsets of their
data with the data owners, in which case more privacy-preserving methods such as noise addition or
feature sharing can be explored.

4

References
[1] URL https://www.unb.ca/cic/datasets/ids-2018.html.

[2] Pytorch transforms. arXiv preprint arXiv:2304.02643. URL https://pytorch.org/vision/
0.9/transforms.html.

[3] Xiang An, Jiankang Deng, Kaicheng Yang, Jaiwei Li, Ziyong Feng, Jia Guo, Jing Yang, and
Tongliang Liu. Unicom: Universal and compact representation learning for image retrieval.
arXiv preprint arXiv:2304.05884, 2023.

[4] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative
components with random forests. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VI 13, pages 446–461. Springer,
2014.

[5] Sonia Castelo, Rémi Rampin, Aécio Santos, Aline Bessa, Fernando Chirigati, and Juliana
Freire. Auctus: a dataset search engine for data discovery and augmentation. Proc. VLDB
Endow., 14(12):2791–2794, jul 2021. ISSN 2150-8097. doi: 10.14778/3476311.3476346. URL
https://doi.org/10.14778/3476311.3476346.

[6] Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. Lazo: A cardinality-
based method for coupled estimation of jaccard similarity and containment. In 2019 IEEE
35th International Conference on Data Engineering (ICDE), pages 1190–1201, 2019. doi:
10.1109/ICDE.2019.00109.

[7] Phillip Chlap, Hang Min, Nym Vandenberg, Jason Dowling, Lois Holloway, and Annette Ha-
worth. A review of medical image data augmentation techniques for deep learning applications.
Journal of Medical Imaging and Radiation Oncology, 65(5):545–563, 2021.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[9] Ethan R Elenberg, Rajiv Khanna, Alexandros G Dimakis, and Sahand Negahban. Restricted
strong convexity implies weak submodularity. arXiv preprint arXiv:1612.00804, 2016.

[10] Mahdi Esmailoghli, Jorge-Arnulfo Quiané-Ruiz, and Ziawasch Abedjan. Cocoa: Correlation
coefficient-aware data augmentation. In International Conference on Extending Database
Technology, 2021. URL https://api.semanticscholar.org/CorpusID:232283631.

[11] Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mita-
mura, and Eduard Hovy. A survey of data augmentation approaches for nlp. arXiv preprint
arXiv:2105.03075, 2021.

[12] Raul Castro Fernandez. Aurum: a story about research taste, page 387–391. Association
for Computing Machinery and Morgan & Claypool, 2018. ISBN 9781947487192. URL
https://doi.org/10.1145/3226595.3226631.

[13] Sainyam Galhotra, Yue Gong, and Raul Castro Fernandez. Metam: Goal-oriented data discovery,
2023.

[14] Sebastian Garcia, Agustin Parmisano, and Maria Jose Erquiaga. IoT-23: A labeled dataset
with malicious and benign IoT network traffic. 2020. doi: 10.5281/zenodo.4743746. URL
http://doi.org/10.5281/zenodo.4743746.

[15] Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset
selection in deep learning. In International Conference on Database and Expert Systems
Applications, pages 181–195. Springer, 2022.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

5

https://www.unb.ca/cic/datasets/ids-2018.html
https://pytorch.org/vision/0.9/transforms.html
https://pytorch.org/vision/0.9/transforms.html
https://doi.org/10.14778/3476311.3476346
https://api.semanticscholar.org/CorpusID:232283631
https://doi.org/10.1145/3226595.3226631
http://doi.org/10.5281/zenodo.4743746

[17] Zeshan Hussain, Francisco Gimenez, Darvin Yi, and Daniel Rubin. Differential data aug-
mentation techniques for medical imaging classification tasks. In AMIA annual symposium
proceedings, volume 2017, page 979. American Medical Informatics Association, 2017.

[18] Hiroshi Inoue. Data augmentation by pairing samples for images classification. arXiv preprint
arXiv:1801.02929, 2018.

[19] Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Arjun Nitin Bhagoji, Paul Schmitt, Francesco
Bronzino, and Nick Feamster. Netdiffusion: Network data augmentation through protocol-
constrained traffic generation. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 8(1):1–32, 2024.

[20] Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh
Iyer. Grad-match: Gradient matching based data subset selection for efficient deep model
training. In International Conference on Machine Learning, pages 5464–5474. PMLR, 2021.

[21] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer.
Glister: Generalization based data subset selection for efficient and robust learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 8110–8118,
2021.

[22] Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and Rishabh Iyer. Retrieve: Coreset
selection for efficient and robust semi-supervised learning. Advances in Neural Information
Processing Systems, 34:14488–14501, 2021.

[23] Yeachan Kim and Bonggun Shin. In defense of core-set: A density-aware core-set selection for
active learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 804–812, 2022.

[24] Not Listed. Nfstream: Flexible network data analysis framework. https://www.nfstream.
org/, 2024.

[25] Mohammad Sultan Mahmud, Joshua Zhexue Huang, Salman Salloum, Tamer Z Emara, and
Kuanishbay Sadatdiynov. A survey of data partitioning and sampling methods to support big
data analysis. Big Data Mining and Analytics, 3(2):85–101, 2020.

[26] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pages 6950–6960.
PMLR, 2020.

[27] Fatemeh Nargesian, Ken Pu, Bahar Ghadiri-Bashardoost, Erkang Zhu, and Renée J. Miller. Data
lake organization. IEEE Transactions on Knowledge and Data Engineering, 35(1):237–250,
2023. doi: 10.1109/TKDE.2021.3091101.

[28] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy Krishnaprasad. Or-
thogonal matching pursuit: Recursive function approximation with applications to wavelet
decomposition. In Proceedings of 27th Asilomar conference on signals, systems and computers,
pages 40–44. IEEE, 1993.

[29] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[30] Aécio Santos, Aline Bessa, Fernando Chirigati, Christopher Musco, and Juliana Freire. Cor-
relation sketches for approximate join-correlation queries. In Proceedings of the 2021 In-
ternational Conference on Management of Data, SIGMOD ’21, page 1531–1544, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383431. doi:
10.1145/3448016.3458456. URL https://doi.org/10.1145/3448016.3458456.

[31] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of big data, 6(1):1–48, 2019.

6

https://www.nfstream.org/
https://www.nfstream.org/
https://doi.org/10.1145/3448016.3458456

[32] Xin Wang, Devinder Kumar, Nicolas Thome, Matthieu Cord, and Frederic Precioso. Recipe
recognition with large multimodal food dataset. In 2015 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW), pages 1–6. IEEE, 2015.

[33] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri. Infogather:
entity augmentation and attribute discovery by holistic matching with web tables. In Pro-
ceedings of the 2012 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’12, page 97–108, New York, NY, USA, 2012. Association for Computing Machinery.
ISBN 9781450312479. doi: 10.1145/2213836.2213848. URL https://doi.org/10.1145/
2213836.2213848.

[34] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data
augmentation. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 13001–13008, 2020.

[35] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. Lsh ensemble: internet-scale
domain search. Proc. VLDB Endow., 9(12):1185–1196, aug 2016. ISSN 2150-8097. doi:
10.14778/2994509.2994534. URL https://doi.org/10.14778/2994509.2994534.

[36] Ding-Nan Zou, Song-Hai Zhang, Tai-Jiang Mu, and Min Zhang. A new dataset of dog breed
images and a benchmark for finegrained classification. Computational Visual Media, 6:477–487,
2020.

In this Appendix, we aim to (i) provide proofs for the optimality of Mycroft (ii) provide more details
about the datasets, algorithms and models used to obtain the results in the main body of the paper (iii)
present additional experiments to further validate the discoveries in the main body of the paper. The
Appendix is organized as follows:

1. Summary of symbols and notations used (Appendix A)
2. Description and Proof of the optimality of our joint optimization objectiveMycroft (Appendix B)
3. Further details about the experiment setup including the datasets and models used (Appendix D)
4. Additional results and ablation studies (Appendix E)
5. Details and results for case studies (Appendix F)
6. Runtime analysis, total compute and algorithms for Mycroft subroutines (Appendix C)

A Symbols and Notations

Symbol Description

DO Data Owner

MT Model Trainer

DMT MT’s dataset

MMT MT’s model

Dtest MT’s test dataset

Di ith DO’s dataset

Duseful
i Subset of Di retrieved by Mycroft or random-sampling

Dhard Subset of Dtest which is incorrectly classified and is shared with the DOs
Table 2: Table of notations used in the paper.

B Proof for the optimality of our joint optimization objective

B.1 Combining Feature Similarity and Gradient Matching

In the case where the DO has access to a well-trained model as well as a good feature extractor,
both notions of similarity can be used. We do this by adding a regularization term in terms of a

7

https://doi.org/10.1145/2213836.2213848
https://doi.org/10.1145/2213836.2213848
https://doi.org/10.14778/2994509.2994534

composite norm that incorporates the feature similarity between samples from Dhard and Di to the
approximation error in Eq. 1:

e′λ1,λ2
(w) = eλ1

(w) + λ2 ∥Ψw∥22 , (2)

where Ψ is a matrix of distances. The second term functions as a regularizer that penalizes samples
that are far from feature representations of Dhard. In the following theorem, we show sub-modularity:
Theorem B.1. If the loss function L(·) is bounded above by Lmax and ∀j, ∥∇θiL(zj)∥ ≤ ∇max, then

fλ1,λ2(w) = Lmax − e′λ(w) is weakly submodular with parameter γ′ ≥ λ1+λ2∥Ψ∥2
2

λ1+λ2∥Ψ∥2
2+k∇2

max
,

where ∥ · ∥2 is the spectral norm for matrices. Again, from [9], we get that OMP returns a 1− eγ
′
-

close approximation of the maximum value of fλ1,λ2
(w) and we present the proof for this below. In

essence, we need to prove that the following function is weakly submodular with paramter γ′:

fλ1,λ2(w) = Lmax − min
∥w∥0≤k

∥∥∥∥∥∥
∑

zj∈Di

wj∇θiL(zj)−∇θiL(D
hard)

∥∥∥∥∥∥+ λ1 ∥w∥22 + λ2 ∥Ψw∥22 , (3)

under the conditions specified in Theorem B.1. Given that this function is submodular, then the use
of the Orthogonal Matching Pursuit (OMP) algorithm from [9] will return a k-sparse subset with
performance that is a 1− eλ

′
approximation of the maximum value.

Proof of Theorem B.1. From Elenberg et al. [9], a function is γ′ weakly submodular with γ′ ≥ m
M

where m is the restricted strong concavity parameter and M is the restricted smoothness parameter.

To prove that fλ1,λ2
(w) is strongly concave with parameter m, we need to show that

−m

2
∥v −w∥22 ≥ fλ1,λ2

(v)− fλ1,λ2
(w)− ⟨∇fλ1,λ2

(w),v −w⟩ (4)

Plugging in fλ1,λ2(·) from Eq. 1, we get

−m

2
∥v −w∥22 ≥ −λ1∥v −w∥22 − λ2∥Ψv −Ψw∥22

≥ −λ1∥v −w∥22 − λ2∥Ψ∥22∥v −w∥22,

where the final inequality arises from the property of the induced norm with respect to a matrix and
∥Ψ∥ is the spectral norm of the distance matrix Ψ. This implies m ≤ 2(λ1 + λ2∥Ψ∥22).

To prove that fλ1,λ2
(w) is restricted smooth with parameter M , we need to show that

fλ1,λ2
(v)− fλ1,λ2

(w)− ⟨∇fλ1,λ2
(w),v −w⟩ ≥ −M

2
∥v −w∥22 (5)

Expanding the term on the L.H.S. again, we get,

− λ1∥v −w∥22 − λ2∥Ψ∥22∥v −w∥22 −
∑
j

vj(
∑
k

(wk − vj)∇θi(zj)
⊺∇θi(zk))

≥ −λ1∥v −w∥22 − λ2∥Ψ∥22∥v −w∥22 − k∇2
max∥v −w∥22,

where the final inequality arises from the k− sparse condition on the weight vectors and the bound
on the gradients of the loss function. This gives M ≥ 2(λ1 + λ2∥Ψ∥22 + k∇2

max).

Together, this gives γ′ ≥ λ1+λ2∥Ψ∥2
2

λ1+λ2∥Ψ∥2
2+k∇2

max
.

C Pseudo code and runtime analysis for Mycroft

C.1 Pseudo code for subroutines which Mycroft uses

[AB: There is no text here! Need to refer to the subroutines and how they relate to each other.]

8

Algorithm 2 FeatureSimilarity

Require: Dhard, Di, Budget k,
1: ϕ(Dhard), ϕ(Duseful

i)← DO runs FeatureExtractor(Dhard, Di) ▷ Unicom or Binnning
2: Ψ← ComputeDistances(ϕ(Dhard), ϕ(Duseful

i))
3: Duseful

i ← RetrieveTopK(Ψ, k)
4: return Duseful

i

Algorithm 3 OMP

Require: Dhard, DO’s loss function : L, Di, Mi’s parameteres θ, regularization coefficients: λ1,λ2 ,
subset size: k, tolerance: ϵ

1: X ← ∅
2: r ← ∇θiL(D

hard)
3: while X ≤ k and r ≥ ϵ do
4: m← argmaxj |Proj(∇θiL(Di), r)|
5: X ← X ∪ {m}
6: w∗ ← argminw e′λ1,λ2

(w,X)
7: r ← r − Proj(X , w∗)
8: end while
9: return X , w

C.2 Complexity & Runtime of Mycroft

Image datasets: Mycroft for the image domain consists of two techniques: Unicom and GradMatch.
Here, we discuss the computation and memory complexity of both these techniques in order to give
a sense of their efficiency and practicality. Unicom operates by projecting all data points in the
representation space of the Unicom model, which is based on CLIP [29], and computing distances
between those data points. Thus, its compute and memory requirement scale in proportion to the
number of data points to be projected as each sample requires a forward pass through the model
to acquire its feature representation which needs to be held in stored for computing distances with
other data points. Empricially, we find that this procedure takes less than 5 minutes and requires
less than 4 GB of GPU memory for each experiment we present in this paper. GradMatch requires
computing gradients for each data point in Dhard and DO’s using the DO’s model once. In practice, we
only use the gradients of the last two layers, which significantly reduces the compute and memory
requirements. The gradients are then used to run the OMP algorithm which has a complexity of
O(NM + Mk + k3) for each of the k iterations where k is |Duseful

i |, M is the dimension of the
gradients and N is |Di|. For experiments in this paper, each experiment ran in under 10 minutes and
required approximately 6 GigaBytes of memory.

Algorithm 4 BinningDistance

Require: Dhard, DO, percentage to sample from DO: r, minimum number of non-empty bins for each
feature: b, binning candidates list (in increasing order): candidates, features used for binning:
features

1: X DO, XDhard ← ExtractBinningFeatures(Dhard, DO, r, b, candidates, features)
2: D ← ∅
3: for pDO in X DO do
4: d_l← ∅
5: for pD

hard
in XDhard

do
6: d← GetDistance(pDO, pD

hard
)

7: d_l← d_l ∪ {d}
8: end for
9: D ← D ∪ {d_l}

10: end for
11: return D

9

Algorithm 5 ExtractBinningFeatures

Require: Dhard, DO, percentage to sample from DO: r, minimum number of non-empty bins for each
feature: b, binning candidates list (in increasing order): candidates, features used for binning:
features

1: DOsamples ← sample(DO, r)
2: UnionSamples← Dhard ∪ DOsamples

3: X DO ← ∅
4: XDhard ← ∅
5: for f in features do
6: NumBin← max(candidates)
7: for n in candidates do
8: NumFilled← CountNonEmptyBins(UnionSamples[f], n)
9: if NumFilled ≥ b then

10: NumBin← b
11: break
12: end if
13: end for
14: edgef ← GetEdge(UnionSamples[f],NumBin)
15: X DO ← X DO ∪ GetBinningCoordinates(DO[f], edgef)
16: XDhard ← XDhard ∪ GetBinningCoordinates(Dhard[f], edgef)
17: end for
18: return X DO, XDhard

Tabular dataset: The runtime for tabular dataset as described in 4 is O(MNF) where M is the
number of samples in DO, N is the number of samples in Dhard, F is the number of features used for
ExtractBinningFeatures. Empirically, each experiment takes less than 5 minutes and requires less
than 3 GB of memory.

D Further setup details

MT will evaluate the utility of DO’s data based on the framework found in Figure 2. Further details
about the datasets and training process used to obtain the results in the main body of the paper are
provided in this section.

Figure 2: Framework for MT to evaluate the utility of DO’s data.

D.1 Datasets

D.1.1 Dogs & Wolves dataset

Neural networks are known to learn spurious correlations in supervised settings. While test data
containing the correlations learnt during training often gets classified correctly, data which does
not contain such correlations is prone to misclassification. We exploit this phenomenon to create a
dataset which helps us simulate a controlled MT-DO interaction. In our case, the MT has a training and
validation dataset which contains spurious correlations but a test dataset which does not contain them

10

Figure 3: Top-k retrieved Duseful
i samples using Unicom for Dhard from the Dogs & Wolves dataset.

Figure 4: Subsets in the Dogs & Wolves dataset. The first column shows Dogs & Wolves - Spurious
where the dogs are on a grass background and the wolves are on snow. The second column shows

Dogs & Wolves - Natural where the dogs are on snow and the wolves are on grass.

and thus their model suffers on the test dataset.
Concretely, we curate a dataset which consists of two classes: Dogs and Wolves. Spurious correlations
are introduced in it by controlling the background of each image which can either be snow or grass.
The MT has data from both animals being on one type of background. In particular, the dogs are on
grass and the wolves are on snow. In the absense of negative examples, the model takes a shortcut
by associating the true label with the background and not the animal. We refer to MT’s training and
validation subset as Dogs & Wolves - Spurious. However, the model performs poorly when the test
samples do not contain the spurious correlations i.e., dogs on snow and wolves on grass. We refer to
this subset as Dogs & Wolves - Natural. We simulate a DO which has a dataset containing both Dogs
& Wolves - Spurious and Dogs & Wolves - Natural and thus their model does not learn background
related spurious correlations. An illustration of this dataset is provided in Figure 4.
Now, if the MT wants to perform well on data from Dogs & Wolves - Natural, they must acquire
data from that distribution and retrain their model in order to break the spurious correlations. This
motivates the MT to acquire new data form the DO. It should be noted that the MT is oblivious as to
why their model performs poorly on Dogs & Wolves - Natural.

11

D.1.2 Food dataset

Food-101 contains 101,000 images of 101 food classes with 750 and 250 images for each category
for training and testing. UPMC Food-101 is a twin dataset to Food-101 and thus has the same
number of categories and size as Food-101. ISIA Food-500 is another food recognition dataset with
approximately 400,000 images for 500 food classes and has many classes which intersect with the set
of classes in UPMC Food-101. In our experiments, we use Food-101 as the MT’s dataset and UPMC
Food-101 and ISIA Food-500 as datasets of two different DO’s.

D.1.3 Tabular dataset

Data source:
The dataset we use consists of five captures (scenarios) of different IoT network traffic [14]. Each
network consists of traffic of two types : benign traffic (when the IoT devices are not not under attack)
and malicious traffic (when the devices are under attack). The attacks are executed in a Raspberry Pi
and each capture can suffer from different attacks. Details about the types of benign/attack present in
each capture can be found in Table 3.

Table 3: Attacks present in each capture, Benign stands for Benign traffic. PHP stands for Part Of A
Horizontal PortScan attack, CC stands for C&C attack, CCT stands for C&C Torii.

Capture Benign/Attacks present

1 Benign, PHP,
3 Benign, CC, PHP
20 Benign, CCT
21 Benign, CCT
34 Benign, CC, PHP

Data Labeling:
From the raw pcap files (which contain the raw network traffic data), we use the Python library
NFStream [24] to extract feature flows (in tabular format) from pcap files. We then match the timing
of the flow with the timing that the attack was executed as mentioned in the data source [14] to label
the data. After labelling the flows, we split these flows based on whether they are benign or malicious
based on their attack type.

Model Trainers: We define an MT to be the IoT device in the captures that want to improve its
model’s ability to predict some particular attack. In this study, we have 7 different MTs. In addition,
because the attack data in this dataset has quite uniform distribution (most likely because they are
conducted in a lab-setting) such that if the model has been trained on the attack, they are very likely
to predict a future attack of the same type with high accuracy, we assume that these MTs are only
trained on benign data. In reality, this scenario is possible because if the network is new, the chances
of them being trained on attack data for this new network is low. The MTs see a very small number of
attack data which its model fail to predict and would like to get more data from DOs to improve their
models.

Data Owners: We artificially inflate the number and complexity of DOs by mixing data from different
captures to generate 95 new DOs. This will increase the difficulty of finding relevant samples in
DOs and simulate the real scenarios where DO are often quite complex.

Details for Dhard:The quantity of Dhard which each MT possesses is very small (2% of the malicious
data) and is chosen randomly from the malicious data of the MT’s dataset.

D.2 Training details

Here, we provide more details about the training procedure we used for obtaining the neural networks
we use for our computer vision tasks.

For the public image datasets we use, we observe that the model performs well on most classes
perform and thus, there is little to gain from external data augmentation. Therefore, to simulate a
more realistic setting, we reduce performance on certain classes of the MT’s model by training them

12

with limited training data. On average, we use 10% of the original training data for the classes we
choose to augment using external datasets and attain an average accuracy of 65% for them.

The MT’s and DO’s models are ResNet50 models pretrained on Imagenet and finetuned on their
respective datasets. The MT’s and DO’s base model is trained for 120 epochs using a learning rate
of 0.03 with a cosine annealing weight decay. The MT’s augmented models, M ′

MT, are obtained by
finetuning their base models for 25 epochs on Duseful

i and their original training dataset.

E Additional results & Ablation studies

E.1 Tabular-data

For this dataset, as noted in §5, the results presented only use feature similarity. We discuss the
reasons here. First, the models that perform the best on this dataset are tree-based classifiers for
which gradient matching does not apply. In addition, to resemble the effect of gradient matching
for tabular data, we have also attempted to retrieve Duseful

i based on DO’s model confidence score
and DecisionTree’s decision path when trained on DO’s data. We find that the performance of these
approaches are not as good as Mycroft. Potential reasons for why these approaches do not work
are (i) features that differentiate benign and malicious traffic for DO might not be features that are
important for MT’s model (as can be seen in the fact that for some DOs, MT’s model does not improve
after data sharing) and (ii) the DecisionTree’s decision path when trained on DO’s data might be
over-reliant on only one or very few features, hence, do not provide useful signals to select Duseful

i .

Performance with different classifiers:
In this section, we present MT’s F1 score after data sharing using random-sampling and Mycroft
for different classifiers. We find that DecisionTree seems to be the best classifier for this dataset.
Refer to Figure 5, 6 and 7 for the results.

(a) CDF of MT’s F1 score after data sharing using
random-samplingwith Duseful

i budget of 5 samples
for different classifiers. DecisionTree seems to be
the best classifier for this dataset.

(b) CDF of MT’s F1 score after data sharing using
random-sampling with Duseful

i budget of 100 sam-
ples for different classifiers. DecisionTree seems to
be the best classifier for this dataset.

Figure 5: Performance of random-sampling for different classifiers for the tabular dataset.

Performance when Duseful
i is selected based on different data selection algorithm:

To explore whether DecisionTree’s decision path can be used to select Duseful
i , we use Duseful

i

budget of 5 samples and compare MT’s F1 score after data sharing when Duseful
i is retrieved from

samples of the same decision path as Dhard, of different decision paths as Dhard, retrieved from
random-sampling and Mycroft. Note that to make this study comparable, we only consider cases
where samples of the same decision path as Dhard and samples of different decision path as Dhard can
be found. This total up to 466 cases. We find that although sharing samples of same decision paths
as Dhard can be slightly better than random-sampling, Mycroft still outperforms this approach
significantly. Refer to Figure 8 for the results.

13

(a) CDF of MT’s F1 score after data sharing using
Mycroft with Duseful

i budget of 5 samples for differ-
ent classifiers. DecisionTree seems to be the best
classifier for this dataset.

(b) CDF of MT’s F1 score after data sharing using
Mycroft with Duseful

i budget of 100 samples for
different classifiers. DecisionTree seems to be the
best classifier for this dataset.

Figure 6: Performance of Mycroft for different classifiers for the tabular dataset.

Figure 7: CDF of MT’s F1 score after data sharing for full-information for different classifiers.
DecisionTree seems to be the best classifier for this dataset.

Performance of combining Mycroft and other data selection methods: To explore
the effects of combining Mycroft and other data selection methods such as DecisionTree’s
decision path and random-sampling, we let Duseful

i to be made up of samples selected by
Mycroft and samples selected by these other data selection methods. We find that MT’s F1
score after data sharing is not significantly improved when combining Mycroft with other data
selection methods compared to using Mycroft alone. Refer to Figure 10 for an example of the results.

F Case Studies

Having evaluated Mycroft in our main setup, we now explore its use in three other realistic scenarios.
The first two are evaluated using vision datasets only whereas the third scenario includes evaluation
on both vision and tabular datasets.

Scenario 1 - Corrupted data features: In a real world setting, data features can often be corrupted
for various reasons such as hardware failures, transmission errors, etc. Since Mycroft is designed to
operate on large scale real-world datasets, we are interested in understanding its ability to retrieve
useful subsets from a dataset with corrupted features.

For evaluation, we corrupt the DO’s dataset using PyTorch’s transforms module which includes
random masking, color jitters etc. and display the results in Figure 9. We see that only deteriorates the

14

Figure 8: CDF of MT’s F1 score after data sharing using different data selection methods with Duseful
i

budget of 5 samples and using full-information. Classifier is DecisionTree. N = 466 cases where
samples of the same decision path as Dhard and samples of different decision path as Dhard can be
found.

Figure 9: Accuracy of M ′
MT when trained on Duseful

i retrieved using Mycroft and random-sampling
under the scenario where approximately 70% of the data or labels are corrupted.

performance of Mycroft by an average of 2.7% over its baseline setting with no corruption whereas
the performance of random-sampling deteriorates, on average, by 13.7%. This further validates
our finding that Mycroft is most useful when the DO’s dataset is heterogeneous and only a subset of
it is useful for the MT.

Scenario 2 - Corrupted labels: Large scale datasets for supervised learning often have incorrect
labels. Therefore, we also perform data sharing experiments where we introduce label corruption
in the DO’s datasets to evaluate how well Mycroft performs in this setting. We implement label
corruption by randomly permuting 70% of the labels in each dataset we evaluate on. We show the
results in Figure 9. We notice that Mycroft is fairly robust to label distortions, with an average
performance reduction of 4.4% over the baseline performance whereas random-sampling suffers
from an average reduction in accuracy of 16.9%.

Scenario 3 - Preference ordering for several DOs: In data markets, often there are multiple
data sellers with datasets of varying utilities. In such a scenario, Mycroft should be able to rank
the utility of different datasets in order to facilitate more informed data sharing agreements. We
experiment with this scenario by constructing several DO datasets with varying amounts of utility and
evaluating whether Mycroft can reconstruct this ordering. The details for the DOs and MT’s used for
this scenario are as follows:
DO-1: This DO contains the highest quantity of data from the same distribution as Dhard and is the
same as the DO we use in other experiments involving the Dogs & Wolves dataset. This DO should
provide the highest utility to the MT.

15

DO Mycroft random-
sampling

full-
information

DO-1 0.81 0.18 0.88
DO-2 0.63 0.31 0.69
DO-3 0.44 0.25 0.63
DO-4 0.56 0.25 0.50
DO-5 0.19 0.25 0.13

Table 4: Preference ordering (based on
accuracy) generated from Mycroft and
random-sampling for selecting from among
several DO candidates with different levels of
utility (where each DO’s number corresponds
to their utillity) from Scenario 4. Mycroft is
mostly able to retrieve the ground-truth pref-
erence ordering whereas random-sampling
fails to do so.

MT Mycroft random-
sampling

full-
information

MT-1 49 34 80
MT-2 16 5 40
MT-3 76 58 92
MT-4 87 23 90
MT-5 60 37 60
MT-6 0 0 24
MT-7 92 25 88

Table 5: Number of useful DOs (F1 score
of M ′

MT>=0.5) retrieved by Mycroft and
random-sampling for budget of 5 samples
and by full-information for different MTs
for tabular data. Number of DO candidates =
95.

DO-2: DO-2 is a noisy version of DO-1 where we introduce noise by randomly transforming the
images using PyTorch transforms [2]. The transforms we apply include Random crops, resizing,
flipping, changing contrast and perspective. We expect the utility of training on such images to be
lower as compared to the clean images.
DO-3: DO-3 has randomly sampled data from dog and wolf classes in the ImageNet dataset. We
empirically verify that it contains a subset of data from the distribution required by the MT and will
thus be useful to the MT to some degree.
DO-4: This DO contains a small subset of the useful samples contained in DO-1. While useful in
nature, this DO’s ability to signal its utility should be limited.
DO-5: DO-5 contains no data from the required training distribution and only consists of the data
from MT’s training distribution. This type of data should have the least utility.

The results for this experiment for image datasets are in Table 4 and show that Mycroft can indeed
help select the most promising DO from a set of candidates while random-sampling is unable to do
so. For the tabular data, because there is no clear ranking amongst the DOs for this dataset (useful DOs
tend to have very similar performance after data sharing, same as non-useful DOs), as such, we plot the
number of useful DOs (defined as those that give an F1 score of at least 0.5 after data sharing) retrieved
by Mycroft and random-sampling for different MTs in Table 5. We see that Mycroft is able to
retrieve more useful DOs compared to random-sampling for all MTs. This shows that Mycroft is
mostly able to retrieve the ground true utility rankings of the various DO datasets indicating it is well
suited for establishing a preference for a set of datasets.

Figure 10: CDF of MT’s F1 score after data sharing when Duseful
i is made up of 100 samples retrieved

from Mycroft and 5 samples retrieved by different data selection methods. Classifier is DecisionTree.
N = 574 cases where samples of the same decision path as Dhardcan be found. Note that the 5 samples
later selected by each data selection method must be different from 100 samples already selected by
Mycroft.

16

	Introduction
	Problem Formulation and Notation
	Mycroft: Identifying and sharing useful data
	Approach 1 : Feature Similarity
	Approach 2 : Loss Gradient Similarity

	Experimental Setup
	Results
	Discussion and Related Work
	Symbols and Notations
	Proof for the optimality of our joint optimization objective
	Combining Feature Similarity and Gradient Matching

	Pseudo code and runtime analysis for Mycroft
	Pseudo code for subroutines which Mycroft uses
	Complexity & Runtime of Mycroft

	Further setup details
	Datasets
	Dogs & Wolves dataset
	Food dataset
	Tabular dataset

	Training details

	Additional results & Ablation studies
	Tabular-data

	Case Studies

