
Scalable RL for Systems via Offline Imitation from
Multiple Baselines: A Case Study in Compiler

Optimization

Teodor V. Marinov
Google Research

tvmarinov@google.com

Alekh Agarwal
Google Research

alekhagarwal@google.com

Mircea Trofin
Google

mtrofin@google.com

Abstract

From scheduling, to resource allocation to optimization of complex workflows,
systems are replete with decision-making problems which are typically addressed
with hand-designed heuristics. Recent literature studies pose these setups as Rein-
forcement Learning (RL) problems owing to a natural fit, with several successes
in simulated benchmark environments. However, bringing the RL approach to
any complex system in practice is full of challenges in integrating the system into
the act-observe-learn paradigm of RL, which has limited the adoption of these
techniques. In this work, we present an alternative approach which uses offline
data collected using multiple existing baseline policies to simultaneously improve
upon them. By repeating multiple iterations of this improvement process, including
any learned policies into the set of baselines, we show how performance can be
quickly bootstrapped using our approach. We demonstrate the practicality of our
approach through evaluation in optimizing the inlining decisions for the LLVM
compiler, and obtain significant improvements even over prior RL-based policies.

1 Introduction

Mapping an input from a user to its actual execution on hardware in any computer system typically
involves a sequence of decisions, ranging from scheduling of operations and allocation of resources,
to choosing among many equivalent reformulations of the input. The goal typically is to make
decisions that improve some target metric of interest, such as running time, network utilization or
memory consumption. In practice, exact optimization is typically intractable, and the decisions are
often made through expert-defined heuristics, often refined over a long period of time. More recently,
the research literature has investigated the use of Reinforcement Learning (RL), which is a principled
paradigm for finding optimal decision sequences.

When applying Reinforcement Learning (RL) to real-world applications, two key challenges often
prove to be critical blockers to adoption. First is that the online act-observe-learn loop in conventional
RL poses a significant engineering overhead in most large-scale systems, that are more naturally
designed to take a static Machine Learning (ML) model as a dependency and update this model
only periodically in an offline manner. The difficulty arises due to coupling of the data collection
and RL policy update steps which typically requires significantly more complex architecture [Mnih
et al., 2016] to scale to domains where data collection is expensive. Our approach, on the other
hand, simply requires interleaving standard supervised learning and batch data collection, which
is quite desirable especially in the compiler application, where the ML training happens on GPUs,
while the compilation happens on CPU machines. Further RL algorithms typically begin tabula
rasa, that is, they only leverage the information they glean about the task at hand through these
online interactions. Typical scenarios, where the use of RL is often preceded by prior attempts using
rule-based or supervised ML approaches, come with a treasure trove of valuable data about desirable

Machine Learning for Systems Workshop at (NeurIPS 2024).

and undesirable behaviors, ignoring which leads to undesirable sample complexity of learning from
scratch for RL. More important, the previously tried decision making policies, even when individually
suboptimal, provide a valuable source of insight into the plausibly good choices in many scenarios. In
this work, we study the question of leveraging such prior policies and any data collected using them,
without necessarily relying on online policy updates. We propose an algorithm based on combining
the available policies and apply it to the inlining for size problem in an LLVM compiler.

Inlining is the process of replacing a call to a function in a program by the body of the function.
Inlining for size is the decision problem of which functions to inline with the goal of minimizing
the size of the compiled binary. This fits nicely into the sequential decision making paradigm as
during compilation steps there is a decision to be made whether to inline a called function or not.
This decision in turn changes the call graph associated with the program and thus evolves the state
for future inlining decisions.

2 Inlining for size as a RL problem

We omit most compilation details and just give a brief overview which should be sufficient for under-
standing the problem from a RL perspective. A detailed description can be found in Appendix D.1.

Following prior work Trofin et al. [2021], each binary target is broken up into multiple modules,
where each module roughly corresponds to a C/C++ source file (after application of any preprocessor
directives). The module in turn consists of multiple callsites in the LLVM Intermediate Representation
(IR), and we consider whether to inline each callsite in the context of the call graph of the module in
which it occurs. We note that the compiler is deterministic, so that we subsequently formulate the
problem as a deterministic environment for RL.

To formulate the above as an RL problem we consider a contextual Markov Decision Process (MDP)
where each context x corresponds to a single module. The state space, S, consists of callsites in
the IR of the module x, and the action set is {inline, don’t inline} or {1, 0} respectively. The
initial state distribution is denoted by D and the sampled context (initial state) is x ∼ D. Once
the context is sampled, the transition kernel Px is deterministic, that is Px(·|s, a) is a point-mass
distribution. The reward function is rx(s, a) and we assume deterministic rewards. We note that both
the transition kernel and reward kernel are context-dependent. We omit the context subscript from
our notation whenever it does not introduce ambiguity. We work in the finite-horizon setting and
denote the horizon as H .

Our goal is to find an inlining policy, which maps the pair (s, x) to an action, which is an inlining
decision. We limit to policies which only depend on the state s and not the context x for simplicity of
notation, with the understanding that any relevant parts of the context can always be included in the
state without loss of generality. The goal is to learn a policy which maximizes the sum of rewards of
the chosen actions: maxπ Ex∼D[

∑H
h=1 rx(sh, ah)|ah = π(sh)].

We conclude this section with noting some conceptual challenges of the setting, apart from the
aforementioned engineering complexity of embedding the system in an RL algorithm’s update loop.
First, most systems applications involve sparse, trajectory-level rewards. For instance, after we
choose a sequence of inlining decisions, we may compile the module and observe the binary size of
the result. This does not give a precise signal about the quality of individual decisions. The sparse
feedback is particularly challenging for RL algorithms which attempt to learn value functions, as
these typically rely critically on intermediate feedback across the trajectory. We intentionally adopt a
solution strategy that can handle such terminal feedback in our approach that we describe next.

3 Algorithm

We start with a set of K baselines policies B = {πi}k∈[K] together with n trajectories for each
policy, which we denote by {τi,j}i∈[K],j∈[n], where xj ∼ D. A trajectory for policy π consists of
state-action pairs {(sh, ah)}h∈[H], with ah ∼ π(·|sh). For an arbitrary policy π and module x we
use τπ(x) to denote the trajectory generated by following π on module x. We also assume that we
see the total reward for each trajectory and policy, that is for all i ∈ [K], j ∈ [n], we only observe
r(τi,j) =

∑
(sj,h,aj,h)∈τi,j r(sj,h, aj,h), instead of observing a dense reward across all the time steps

2

of the trajectory. We assume that the rewards are bounded and non-negative, that is r(τ) ∈ [0, B] for
all trajectories τ and some B > 0.

We have access to a policy class Π and seek to find a policy in Π which ideally competes with each
of the baselines, and is able to combine their strengths.

Algorithm 1 BC-Max for cloning best per-context baseline

Require: Base policies set B = {πk}k∈[K] and policy class Π. Max number of iterations N .
Ensure: Policy π̂ ∈ Π.

1: for l ∈ [N] do
2: for j ∈ [n] do
3: Sample module xj ∼ D
4: ri,j , τi,j = Collect trajectory(πi, xj),∀πi ∈ B
5: Compute highest reward policy πij = argmini∈[K]

∑
(sj,h,aj,h)∈τi,j ri,j(sj,h, aj,h)

6: Compute module weights {wj}j∈[n].
7: π̂l = argminπ∈Π−

∑n
j=1 wj

∑
(sj,h,aj,h)∈τij ,j

aj,h log(π(aj,h|sj,h))

8: πl(s) = argmaxa π̂l(a|s),∀s ∈ S. Expand baseline policy set B = B
⋃
{πl}.

We describe our algorithm, BC-Max, in Algorithm 1. Each iteration of our algorithm can be decom-
posed into two parts. First, select the best policy, among the set of baseline policies, B, for each
module in the corpus. For this, we collect the trajectory of each baesline policy (line 4), and record the
highest reward policy πij for module j (line 5). The second part in our algorithm learns a new policy
to imitate this best per module policy. This is done by minimizing the weighted Behavior-Cloning
(BC) loss in line 7. The newly learned policy is then added to the the set of baseline policies B in
line 8 after which the algorithm begins a new iteration of compiling n modules and learning a new
best policy. The maximum number of overall iterations is N . In Appendix B we provide a theoretical
guarantee on the performance of the learned policy.

Computing the weights. The vanilla BC loss function weighs all module trajectories equally which
leads to learning policies with small average error for the distribution of trajectories in the training
dataset. When deployed, such policies may perform poorly on modules that have rarely been observed
in the dataset. To combat this distribution shift problem we take a boosting style approach where
we re-weight the BC loss so that we maximize the size savings over the worst case module in our
dataset, that is we target small worst-case error rather than small average error. We do this as follows.
At every iteration l of learning we know the performance of the last trained policy, π̂l−1, on every
module which allows us to compute the relative performance of π̂l−1 to the best possible baseline
policy for the respective module. The weights are then adjusted by increasing their value on modules
where the relative performance of π̂l−1 is the weakest.

Online versus offline learning. Our theoretical setup frames the problem in an offline learning
scenario, yet Algorithm 1 relies on our ability to interact with the environment in an adaptive
manner. Note, however, that the modality of interaction used in our approach is quite different, and
significantly more practical than full-fledged online RL. Each round of policy learning, i.e. solving
the optimization problem in Equation 7, is fully offline. This process, which involves a large number
(105 − 106) stochastic gradient steps, happens without any interaction with the environment, and is
where the bulk of the learning happens. Subsequently, we form a new data collection policy for the
next iteration, and this policy is applied to collect one trajectory per module. The data collection
process does not involve any policy updates, and hence is massively parallelizable.

4 Empirical evaluation

We train and evaluate on two sets of binaries. In the first experiment we train on a proprietary search
binary and evaluate the model on a different proprietary set of targets that are part of a cloud systems
infrastructure. These targets need to be installed on a fixed size partition of each cloud machine and
hence are size-constrained. In the second experiment we train and evaluate on the Chrome binary
on Android. Here we only present results for Chrome on Android and defer the search application
targets to Appendix D.3.

3

(a) Savings (MB) to PPO on sum of module sizes (b) Savings (MB) to PPO on binary size

Figure 1: Savings (MB) to PPO

The dataset collection begins by creating a corpus of IRs of modules which make up the final binary.
The corpus creation follows the work of Trofin et al. [2021], Grossman et al. [2023], and the tools for
extracting the corpus are available on GitHub1. The corpus is created at the beginning of training and
remains the same throughout every iteration. Training begins under the assumption that there exists
at least one base policy π1. We track the improvements at each iteration of BC-MAX over π1.

4.1 Chrome on Android

Training and test binaries are the same for this setting. The base policy with which we start is an
RL policy trained using Proximal Policy Optimization (PPO2) [Schulman et al., 2017] as done in
Trofin et al. [2021]. In practice our algorithm incorporates additional exploration when collecting
trajectories in line 4, where we may deviate from the inlining action selected by a baseline policy
at certain states. For details on how this is done we refer the reader to Algorithm 3 in the appendix.
Further, we experiment with two types of weights, one is a fixed weighting of modules which does
not depend on the performance of the current policy and the second is the boosting based approach
called Hedge weights, which is described in the previous section. More details on how the weights
are computed can be found in Appendix D.4. In Figures 1a and 1b, we plot the savings of our learned
policies across iterations, relative to the initial PPO policy, measured in two different ways. For
Fig 1a, we simply add up the sizes of the binaries produced by compiling each module in our training
dataset. This is a clean metric, as the distribution shift between training and evaluation is small, and
no artifacts from linker or post-inlining be optimizations are introduced in the evaluation. As we
see, we improve rapidly beyond the PPO policy with the iterative applications of BC-Max. Note that
even the sum of module sizes suffers from the typical distribution shift between online and offline
RL, since the data used from behavior cloning is collected using a different policy than the one we
apply in evaluation. For the sum of module sizes metric, we can study the effect of this distribution
shift rather carefully by also compiling with an oracle policy, which simply chooses the best baseline
policy for each module, which is the target for training in BC-Max. This oracle, shown in red in
Figure 1a naturally provides larger gains relative to PPO than our learned policy as expected, but
the gap reduces through the iterations of our process, indicating that the policies tend to stabilize
through iterations, and the training data for later applications of BC-Max is closer to on-policy data.
We note that the oracle changes between different instantiations of our weights. This is because the
i-th trained policy πi depends on the choice of weights and so the oracle after the i-th iteration which
chooses the best among {πi}i`=1 also depends on the choice of weights. We also note that the gap
between the learned and oracle policy’s performance is smaller when we use the Hedge weights, and
that the weighted version has a bigger gain relative to PPO, showing the efficacy of this approach.
Finally, in Figure 1b we present the savings in size of the Chrome on Android binary, which is the
actual yardstick. Here we cannot easily evaluate the size of the oracle, so we only compare our
policies to PPO, and again observe impressive gains, with the Hedge-weighted variant doing better.
The binary size when compiled with the PPO policy is approximately 213.32 MB.

1A detailed example can be found at https://github.com/google/ml-compiler-opt/blob/main/
docs/inlining-demo/demo.md

2The policy can be found here: https://commondatastorage.googleapis.com/
chromium-browser-clang/tools/mlgo_model2.tgz

4

https://github.com/google/ml-compiler-opt/blob/main/docs/inlining-demo/demo.md
https://github.com/google/ml-compiler-opt/blob/main/docs/inlining-demo/demo.md
https://commondatastorage.googleapis.com/chromium-browser-clang/tools/mlgo_model2.tgz
https://commondatastorage.googleapis.com/chromium-browser-clang/tools/mlgo_model2.tgz

References
André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement

learning with generalized policy updates. Proceedings of the National Academy of Sciences, 117
(48):30079–30087, 2020.

Ching-An Cheng, Andrey Kolobov, and Alekh Agarwal. Policy improvement via imitation of multiple
oracles. Advances in Neural Information Processing Systems, 33:5587–5598, 2020.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Aiden Grossman, Ludger Paehler, Konstantinos Parasyris, Tal Ben-Nun, Jacob Hegna, William
Moses, Jose M Monsalve Diaz, Mircea Trofin, and Johannes Doerfert. Compile: A large ir dataset
from production sources. arXiv preprint arXiv:2309.15432, 2023.

Teresa Johnson, Mehdi Amini, and Xinliang David Li. Thinlto: scalable and incremental lto. In
2017 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pages
111–121. IEEE, 2017.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
computation, 108(2):212–261, 1994.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pages 1928–1937. PMLR, 2016.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pages 661–668. JMLR
Workshop and Conference Proceedings, 2010.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski, and David Li. Mlgo:
a machine learning guided compiler optimizations framework. arXiv preprint arXiv:2101.04808,
2021.

Bernard Widrow. Pattern recognition and adaptive control. IEEE Transactions on Applications and
Industry, 83(74):269–277, 1964.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in neural information processing systems,
34:6683–6694, 2021.

Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason Lee. Offline reinforcement
learning with realizability and single-policy concentrability. In Conference on Learning Theory,
pages 2730–2775. PMLR, 2022.

A Setting and Related work

We now define the problem setting formally, and then discuss some lines of prior work which are
relevant to this setting.

5

A.1 Problem setting

Contextual MDP setting. We work in the finite-horizon setting and denote the horizon as H . The
value function of a policy π is

Vπ(x) =

H∑
h=1

Eah∼π(·|sh)[rx(sh, ah)],

where sh is the the state at step h s.t. Px(sh|sh−1, ah−1) = 1 and s1 ≡ x. Importantly, the policy
class is such that the action distribution at state s depends only on s and not on the context, that is
π(·|s, x) = π(·|s). All of our algorithms and upper bounds can be extended to the setting where the
policy depends on the context as well.

Goal. Let Vi(x1) = Vπi(x
1) denote the expected cumulative reward of baseline i, conditioned on

the context x. Then we seek to minimize the regret:

Reg(π) := Ex∼D
[

max
i=1,2,...,K

Vi(x)− Vπ(x)

]
. (1)

That is, we seek to compete with the best of the baselines for each individual context.

A.2 Related work

Learning setup. We assume access to the policy class Π, but do not assume any other function
approximators, such as for modeling value functions. This is partly due to the fact that the typical
training of value functions using Bellman backups is not feasible in our sparse-reward setting.
Furthermore, standard actor-critic techniques make strong completeness and realizability assumptions
on the value function class, which are not realistic with a restricted notion of state which we encounter
in our motivating problem of compiler optimization. This necessitates the development of purely
policy-based methods.

Vanilla behavior cloning Behavior cloning Widrow [1964], Pomerleau [1988] refers to the ap-
proach of learning a policy that matches the mapping from states to actions observed in the data.
This is typically solved as a classification problem for deterministic policies, or by maximizing the
log-likelihood of the chosen actions in the observed states for stochastic policies. It is unclear how
to apply vanilla behavior cloning in the presence of multiple baselines. We will present a natural
formulation to behavior clone the best baseline policy per context in the following section.

Value-based improvement upon multiple baselines (MAMBA) Cheng et al. [2020] show how
to simultaneously improve upon multiple baseline policies to compete with the best policy at each
state in the MDP, which is a significantly stronger notion that competing with the best baseline in each
context only. However, this comes with two caveats. Their method requires value function estimation
for the baselines and access to the MDP to execute trajectories under the learner’s policy and/or
baselines. Barreto et al. [2020] also study a problem which involves improving over multiple baseline
policies, which they title General Policy Improvement. The policy improvement step again requires
value function evaluation. We do not assume such access to additional function approximators or the
MDP in this work.

Offline RL: Without access to the MDP, a natural approach is to consider offline reinforcement
learning, with the data collection policy being a mixture of the baselines πi, say chosen uniformly.
Given the recent results on offline RL to compete with any policy that is covered by the data
distribution [Kumar et al., 2020, Xie et al., 2021, Zhan et al., 2022], we can expect a favorable bound
on the regret (1), since all the baselines have a good coverage under the uniform data collection
policy. However, existing offline RL methods with theoretical guarantees are typically based on
value function approximation, relying on actor-critic or Q-learning style approaches and on strong
credit assignment using per timestep rewards rather than the aggregated reward of a trajectory.
Applying these techniques using policy-based function approximation alone and with aggregated
reward feedback is not feasible as we argue through a simple lower bound example.

6

B Vanilla BC-Max and Regret Bounds

We now describe our algorithm, BC-Max, and give an upper bound on the regret it incurs to the best
per-context baseline.

Algorithm. We describe BC-Max in Algorithm 2. The basic idea of the algorithm is quite simple.
For each context xj in our dataset, we first choose the trajectory with the highest cumulative reward
across all the baselines. Then we use a standard behavior cloning loss to mimic the choice of actions
in this trajectory. For a context xj , j ∈ [n], we denote ij = argmaxi∈[K] r(τi,j), and BC-Max tries to
find a policy π̂ ∈ Π that optimizes the following intuitive objective:

π̂ = argmin
π∈Π

n∑
j=1

∑
(sj,h,aj,h)∈τij ,j

1(π(sj,h) 6= aj,h). (2)

Algorithm 2 BC-Max for cloning best per-context baseline.

Input: Base policies {πi}i∈[K] and policy class Π.
Output: Policy π̂ ∈ Π.

for j ∈ [n] do
Sample xj ∼ D, collect trajectories {τi,j}j∈[n].
Compute the highest reward policy πij = argmaxi∈[K]

∑
(sj,h,aj,h)∈τi,j r(sj,h, aj,h).

π̂ = argminπ∈Π

∑n
j=1

∑
(sj,h,aj,h)∈τij ,j

1(π(sj,h) 6= aj,h).

One natural question at this point might be that if there are two trajectories with very similar high
rewards in a context, can it help to leverage this information rather than only picking the one with the
higher reward and cloning it. This is indeed a shortcoming of BC-Max, and other behavior cloning
style approaches. However, we note that we only have access to a trajectory-level reward, and hedging
between two very different trajectories can create a very noisy learning setup for the algorithm. In
situations where value-functions can be feasibly learned, such information is naturally modeled
through the value function which assigns similar future rewards to similarly good actions, but we do
not find a natural way for incorporating this information in our setup.

Performance guarantee for BC-Max. We now give a bound on the suboptimality of the policy
learned by BC-Max, relative to the best per-context baseline, in terms of the rewards. The analysis
mirrors the standard results for behavior cloning algorithms [Ross and Bagnell, 2010]. We begin with
a realizability assumption which governs how well the best per-context baseline can be approximated
using the learner’s policy class Π.
Assumption B.1. Let τ∗(x) = argmaxτπi (x) r(τπi(x)) be the trajectory with maximum return over
all policies πi, i ∈ [K]. There exists π∗ ∈ Π such that Px∼D(τπ∗(x) 6= τ∗(x)) ≤ ε.

Here Px∼D(A) denotes the probability of an event A under the distribution D, which we recall is
the distribution over the contexts x. The assumption is natural as BC-Max cannot do a good job of
approximating the best per-context baseline when no policy in the policy class has a small error in
achieving this task. Note that the assumption does not take rewards into account as BC-Max only
matches the actions of τ∗(x), and does not reason about the reward sub-optimality of other actions, as
is common in behavior cloning setups. Indeed this assumption is unavoidable in our problem setting
as we illustrate in the next section.
Theorem B.2. Under Assumption B.1, after collecting n trajectories from each of theK base policies,
Algorithm 2 returns a policy π̂ with regret at most

Reg(π̂) ≤ O
(
εH +

H2 log(H|Π|/δ)
n

)
,

with probability at least 1− δ.

Proof of Theorem B.2. Recall the definitions of τ∗(x) from Assumption B.1, and let π∗ =

argminπ∈Π Ex∼D(
∑H
h=1 1(π(s(x)) 6= a(x))) where (sh(x), ah(x))Hh=1 = τ∗(x) form the

7

best trajectory for x among the baseline policies. Under Assumption B.1, we know that
Ex∼D(

∑H
h=1 1(π(s(x)) 6= a(x))) ≤ εH . Let us define

Â(π) =

n∑
j=1

H∑
h=1

1(π(sj,h) 6= aj,h),

A(π) =Ex

(
H∑
h=1

1(π(sh(x)) 6= ah(x))

)
.

Clearly we have that E[Â(π)] = A(π) for any fixed policy π, and Â(π) =
∑n
j=1 Zj(π) with

Zj(π) =
∑H
h=1 1(π(sj,h) 6= aj,h) ≥ 0. We note that the Zj are i.i.d., with E[Zj(π)] = A(π) and

E[Zj(π)2] ≤ H E[Zj(π)] = H A(π). Then by Bernstein’s inequality combined with a union bound
over policies, we have with probability at least 1− δ, for all π ∈ Π:

|Â(π)− nA(π)| ≤
√
nH A(π) log(2|Π|/δ) +H log(2|Π|/δ)

≤nA(π)

2
+

3

2
H log(2|Π|/δ).

Applying the inequality with π = π̂ and π = π∗, we obtain

A(π̂) ≤ 2

n
Â(π̂) +

3H log(2|Π|/δ)
n

1

n
Â(π∗) ≤3

2
A(π∗) +

3

2

H log(2|Π|/δ)
n

.

Scaling the second inequality by 2 and adding them yields

A(π̂) ≤ 3A(π∗) +
6H log(2|Π|/δ)

n
≤ 3ε+

6H log(2|Π|/δ)
n

, (3)

where the second inequality follows by Assumption B.1.

Now we note that for any policy π:

Reg(π) = Ex[max
i
Vi(x)− Vπ(x)] = Ex[r(τ(x))− r(τπ(x))]

≤
H∑
h=1

(H − h)Ex[1(π(sh(x)) 6= ah(x))|].

Plugging the bound from Equation 3 into the inequality above completes the proof.

C Necessity of the comparator choice

In this section, we show an example which explains why it is necessary to restrict the comparator
class to the max over baseline policies.

Let us consider a contextual multi-armed bandit problem, meaning that we fix H = 1. For any ε, we
choose the context space S = [M] for M = d 1

ε e, and choose D to be the uniform distribution on S.
We fix A = {a1, a2, a3}, and K = 1, with the data collection policy π1 choosing a = a1 for each
context x ∈ S . We consider two possible environments, defined through rewards r1, r2. For a1, we
have r1(x, a1) = r2(x, a1) = 1. For the other two actions, we have r1(x, a2) = 0 and r1(x, a3) = 1,
while the second environment has r2(x, a2) = 1 and r2(x, a3) = 0. We design a policy class π with
two policies {π1, π2} such that π1(x) = π2(x) = a1 for all x 6= 1 and π1(1) = a2, π2(1) = a3.
Clearly this policy class satisfies Assumption B.1. But it also contains an optimal policy for both
the rewards r1, r2 with a regret equal to 0. However, since the data contains no information about
which one of r1 or r2 generated the data, the best we can do is to pick between π1 and π2 uniformly
at random, and incur a regret of at least 0.5ε. This argument shows that we cannot replace the 0− 1
loss for measuring the accuracy of a policy in Assupmtion B.1, with a more reward-aware quantity. It
is also evident from the example that we cannot avoid incurring a regret of Ω(ε).

8

D Case study: Optimizing a compiler’s inlining policy

D.1 The inlining for size problem

In short the inlining problem which we study in our experiments consists of deciding to inline or
not to inline a callsite in a program with the goal of minimizing the size of the final program binary.
We omit most compilation details and just give a brief overview which should be sufficient for
understanding the problem from a RL perspective. In our specific scenario, compilation is split
into a frontend (fe) and a backend (be). The frontend consists of translating the program into an
Intermediate Representation (IR), doing some frontend optimizations, then a (thin) link step follows,
which re-organizes functions in the various modules to improve inlining opportunities. For more
details on the linking step see Johnson et al. [2017]. The backend compilation follows the thin link
step and is applied on the updated modules. It consists of further optimizations, including inlining
decisions, final linking and lowering the IR to machine code, e.g., x86, ARM, etc. The IRs with
which our RL algorithms work with are post frontend linking and pre backend optimization, that is
we work only on backend optimizations. We note that a program is made up of multiple modules.
In the fe, a module corresponds to a single C/C++ source file, after all the preprocessor directives
have been applied. In the be, the module consists of a mix of IRs from different fe modules. The
inlining decisions are taken at callsites in the IRs of each module, where the callee is also in the same
module. We note that each module is ultimately compiled to a machine code-specific binary, with its
own size, that is further linked into the final executable. Hence we treat each module as a context x in
our contextual MDP setting, and the value Vi(x) of the baseline policy πi is the size of the binary we
get for module x, when we make inlining decisions for the module according to πi.

Program→ IRs→ fe optimizations

→ThinLinking3 Collecting IRs−−−−−−−−−→ be optimization
→Final linking→ x86

(4)

In Equation 4 we outline the compilation process, together with the step at which we collect IRs from
the respective modules to be used in our RL algorithms. It is important to note that the learned RL
policy makes inlining decisions both at the fe optimization and be optimization parts in Equation 4,
however, the IRs for training are only collected after the fe optimization step.

The contextual MDP setting can now be tied together with the compilation process as follows. Each
context is a module as mentioned above, with state-space defined by its IR. Each state corresponds
to a callsite in the IR of the module x, and the action set is {inline, don’t inline} or {1, 0}
respectively. Each πi is some base inlining policy and Vi(x) is defined by the size of the compiled
stand-alone module x. It is important to note that there is a mismatch between trying to maximize
Ex∼D[Vπ(x)] and the overall goal of minimizing the binary size, as it is not necessarily true that the
sum of module sizes equals the size of the binary. In fact, part of the post-inlining be and linker
optimizations may introduce a significant distribution shift between the sum of module sizes and the
size of the final binary. In our experiments, we try to minimize this distribution shift by turning off
certain optimizations. For more details on the compilation pipeline we refer to Trofin et al. [2021].

We note that the entire process is fully deterministic, as we assumed in our theoretical setup, since
the compiler is a deterministic program.

D.2 Dataset collection

We train and evaluate on two sets of binaries. In the first experiment we train on a proprietary search
binary and evaluate the model on a different proprietary set of targets that are part of a cloud systems
infrastructure. These targets need to be installed on a fixed size partition of each cloud machine and
hence are size-constrained. In the second experiment we train and evaluate on the Chrome binary on
Android. Training proceeds in two separate steps, which we repeat over several iterations. The two
steps can be summarized as follows, first we collect a training dataset which consists of trajectories
with smallest size over all base policies available at the current iteration. Next, we train a new base
model using the objective defined in Equation 2. This conceptually applies Algorithm 2 repeatedly,
where the set of baseline policies is updated at each iteration to include the new policy obtained from
the previous iteration. We now describe each step carefully.

3See Johnson et al. [2017]

9

Training dataset collection. The dataset collection begins by creating a corpus of IRs of modules
which make up the final binary. The corpus creation follows the work of Trofin et al. [2021], Grossman
et al. [2023], and the tools for extracting the corpus are available on GitHub4. The corpus is created
at the beginning of training and remains the same throughout every iteration. Training begins under
the assumption that there exists at least one base policy. In the first iteration a training dataset is
collected from this initial base policy π1. Next, π1 is behavior cloned by solving the optimization
problem in Equation 2, where the setting of example weights is described shortly. Let π̂2 denote the
resulting policy. This policy is non-deterministic and so we construct the base policy π2 by setting
π2(s) = argmaxa∈{0,1} π̂2(s, a), that π2 always plays the most likely action according to π̂2. This
concludes the first iteration. More generally, if we have a larger initial set of baseline policies than
just a singleton{π1}, the iterations proceed similarly. However, instead of just using π1, we use the
full set {πi}i∈[K] of baseline policies at every iteration at the first iteration.

Proceeding this way, at the t-th iteration the set of base policies is taken as a subset of {π1, . . . , πt−1}
which always contains π1 (or the larger set of all initial baselines). Then we again invoke BC-Max
with these baseline policies, and obtain a new randomized policy π̂t, and we refer to πt as the
corresponding deterministic greedy policy. When collecting a new training dataset we not only collect
trajectories with the chosen subset of base policies but we also may force exploration by using π̂t−1

in the way discussed next.

Exploration in training dataset collection. For a fixed module x and a policy π, we choose a
ceiling on the number of exploration steps as a hyper parameter, which is a fraction of the length
of the trajectory |τπ1(x)|. The call-sites at which exploration occurs are selected as follows. The
first exploration call-site is selected as h̃ = argminh{|π̂(sh)(0)− π̂(sh)(1)|}sh∈τπ(x), as the call-site
where the exploration policy π̂ is the least confident about the action to choose. The exploration step
is then played at sh̃ by taking the action 1−π(sh̃) (recall that π(s) ∈ {0, 1}), and the remaining steps
in the trajectory are completed by playing according to π. Let τ̂ denote this exploration trajectory.
In the following exploration round, the exploration step is selected as the step h at which the gap,
|π̂(sh)(0) − π̂(sh)(0)|sh∈τ̂ , is smallest among all h > h̃, where h̃ is the exploration step in the
previous round. Once the maximum number of exploration rounds is reached or the exploration step
reaches the end of the trajectory, we return the trajectory which results in the smallest module size
among all explored trajectories. Pseudo-code is presented in Algorithm 3.

Algorithm 3 Explore module

Input: Base policy π, exploration policy π̂, module x, maximum exploration steps T .
Output: Compilation trajectory τπ(x) with reward rπ,x.

Compute vanilla trajectory τπ(x) by compiling with π and receive reward r1
π,x

t = 1, τ̂1 = τπ(x), h̃1 = argminh{|π̂(sh)(0)− π̂(sh)(1)|}sh∈τ̂1
while t ≤ T do

Replay τ̂t until h̃t,
Play 1− π(sh̃t) at h̃t. Complete trajectory τ̂ t+1 by playing π. Receive reward rt+1

π,x

if h̃t < |τ̂t+1| then
h̃t+1 = argminh>h̃t{|π̂(sh)(0)− π̂(sh)(1)|}sh∈τ̂t+1

else
break

t∗ = argmaxt r
t
π,x, rπ,x = rt

∗

π,x, τπ(x) = τ̂t∗

Online versus offline learning. Our theoretical setup frames the problem in an offline learning
scenario, yet Algorithm 3 and the iterative procedure do rely on our ability to interact with the
environment in an adaptive manner. Note, however, that the modality of interaction used in our
approach is quite different, and significantly more practical than full-fledged online RL. Each round
of policy learning, which happens using BC-Max, is fully offline. This process, which involves
a large number (105 − 106) stochastic gradient steps, happens without any interaction with the
environment, and is where the bulk of the learning happens. Subsequently, we form a new data

4A detailed example can be found at https://github.com/google/ml-compiler-opt/blob/main/
docs/inlining-demo/demo.md

10

https://github.com/google/ml-compiler-opt/blob/main/docs/inlining-demo/demo.md
https://github.com/google/ml-compiler-opt/blob/main/docs/inlining-demo/demo.md

collection policy for the next iteration, and this policy is applied to collect one trajectory per module.
The data collection process does not involve any policy updates, and hence is massively parallelizable
with no interlocking bottlenecks with the learning process. In online RL, on the other hand, data
collection and policy updating go hand-in-hand, which typically requires significantly more complex
architecture [Mnih et al., 2016] to scale to domains where data collection is expensive. Our approach,
on the other hand, simply requires interleaving standard supervised learning and batch data collection,
which is quite desirable especially in the compiler application, where the ML training happens on
GPUs, while the compilation happens on CPU machines.

D.3 Search application targets

Similarly to Trofin et al. [2021] we collect a corpus for training purposes from a search application
binary with approximately 30000 modules. The initial base policy is an RL model trained using an
Evolutionary Strategy (ES5) as in Trofin et al. [2021]. For the training dataset with the ES policy,
the distribution of sizes of modules is fairly non-uniform, with few modules having very large sizes
or very small sizes and majority of modules being somewhere in-between. Because we expect that
the actions of the behavior cloning policy taken on larger size modules are more important for size
saving we upweight the actions in such trajectories. The weights used in training are computed as
follows. Let size(x, π1) denote the size of module x from the collected trajectory under policy π1

(or in the case of multiple baseline policy under the best baseline policy). The modules are partitioned
into buckets according to their sizes where the limits of the buckets are taken to be on exponentially
scaling grid, that is the first bucket contains all modules with size size(x, π1) ∈ [0, 20), the second
bucket all modules such that size(x, π1) ∈ [20, 21) etc., up to the final bucket with size [2M−1, 2M).
Let bm = {x : size(x, π1) ∈ [2m−1, 2m)} denote the m-th bucket and let m(x) be the m for which
x ∈ bm(x). The weight wx for module x is computed as follows wx = maxm |bm|

|bm(x)|
.

Algorithm 4 BC-Max for cloning best per-context baseline with exploration

Input: Base policy π1 and policy class Π. Max exploration steps T . Max number of iterations N .
Output: Policy π̂ ∈ Π.
l = 1
while l ≤ N do

for j ∈ [n] do
Sample xj ∼ D1

ri,j , τi,j = Algorithm 3(πi, π̂`, xj , T),∀i ∈ {πs}s≤l
Compute highest reward policy πij = argmini∈[K]

∑
(sj,h,aj,h)∈τi,j ri,j(sj,h, aj,h).

Compute module weights {wj}j∈[n] (See Sect. D.3,4.1).

π̂l = argmin
π∈Π

−
n∑
j=1

wj
∑

(sj,h,aj,h)∈τij ,j

aj,h log(π(aj,h|sj,h))

πl(s) = argmaxa π̂l(a|s),∀s ∈ S

We train two sets of policies, one set is trained without exploration and is precisely in line with
Algorithm 2. For full pseudo-code, which includes the exploration step, we refer the reader to
Algorithm 4. The second set is trained with exploration as described in Section D.2. This way, the
first policy provides an ablation for the value of the exploration strategy.

In Figure 2a we show savings of the trained policies to π1, which is the ES policy, on the search binary
from which the training dataset is collected. In Figure 2b we show the savings on a different test
binary, which is part of a cloud systems infrastructure. On the x-axis of the figures we show the size
savings of the policy πi learned at each iteration i, with and without exploration respectively, where
bc0 is the behavior cloned policy from ES. Both figures demonstrate the success of our approach in
improving significantly beyond the initial baseline, as well as the benefits from multiple iterations
of the process. Furthermore, the gap between the lines with and without exploration highlights the
benefits of the added exploration.

5The policy can be found here: https://github.com/google/ml-compiler-opt/releases/tag/
inlining-Oz-v1.1

11

https://github.com/google/ml-compiler-opt/releases/tag/inlining-Oz-v1.1
https://github.com/google/ml-compiler-opt/releases/tag/inlining-Oz-v1.1

(a) Savings in MB to ES on training binary (b) Savings in MB to ES on test binary

Figure 2: Savings in MB to ES

We note that the compilation for both the training and test binaries is carried out in the following
way to minimize the distribution shift – the fe optimizations are carried out by ES, while the be
optimizations are carried out by the trained policies. If we were to use the trained policies in both
fe and be, this might lead to significant distribution shift, as Algorithm 2 works only on trajectories
collected after the fe optimizations for which ES is always used. That is, if any of the trained policies,
bci, act very differently on the fe, compared to ES, the resulting IRs before the be optimization
might be completely different from the training set IRs, and hence the trained policy might take very
sub-optimal actions.

D.4 Chrome on Android

In our second set of experiments we train an RL policy for Chrome on Android. The training and
test binaries are the same in this case. The base policy with which we start is an RL policy trained
using Proximal Policy Optimization (PPO6) [Schulman et al., 2017] as done in Trofin et al. [2021].
There are two differences in training from Section D.3. First, we focus only on the setting where we
do exploration. The second difference in training is how the weights for the objective in Equation 2
are formed. The approach for computing the weights used here is inspired by the fact that we want
to improve on PPO in each module and not just on the sum of module sizes. That is we want to
maximize the size savings over the worst case module in our dataset. The following approach is
natural when such max-min guarantees are desired.

Reusing notation from Section D.3 we let p1
x =

|bm(x)|∑
m |bm|

, w1
x =

maxm p1x
p1
m(x)

, be the weights in the first

iteration of training. In following iterations the weights are set as wtx =
maxm ptx
pt
m(x)

, where pt is updated

using the Hedge algorithm [Littlestone and Warmuth, 1994], and is inspired by connections with
boosting [Freund and Schapire, 1997]. The update uses the sum of sizes in each bucket as losses,
normalized by the `-infinity norm, that is

L̃tm =
∑
x∈bm

size(x, πt), L
t
m =

L̃tm
‖Lt‖∞

,

where Ltm denotes the m-th coordinate of the loss vector Lt. The Hedge update is then

p̃t+1
m = ptm exp(−ηLtm), pt+1

m =
p̃tm∑
m p̃

t
m

.

In Figures 1a and 1b, we plot the savings of our learned policies across iterations, relative to the
initial PPO policy, measured in two different ways. For Fig 1a, we simply add up the sizes of the
binaries produced by compiling each module in our training dataset. This is a clean metric, as the
distribution shift between training and evaluation is small, and no artifacts from linker or post-inlining

6The policy can be found here: https://commondatastorage.googleapis.com/
chromium-browser-clang/tools/mlgo_model2.tgz

12

https://commondatastorage.googleapis.com/chromium-browser-clang/tools/mlgo_model2.tgz
https://commondatastorage.googleapis.com/chromium-browser-clang/tools/mlgo_model2.tgz

be optimizations are introduced in the evaluation. As we see, we improve rapidly beyond the PPO
policy with the iterative applications of BC-Max. Note that even the sum of module sizes suffers from
the typical distribution shift between online and offline RL, since the data used from behavior cloning
is collected using a different policy than the one we apply in evaluation. For the sum of module
sizes metric, we can study the effect of this distribution shift rather carefully by also compiling
with an oracle policy, which simply chooses the best baseline policy for each module, which is the
target for training in BC-Max. This oracle, shown in red in Figure 1a naturally provides larger gains
relative to PPO than our learned policy as expected, but the gap reduces through the iterations of
our process, indicating that the policies tend to stabilize through iterations, and the training data for
later applications of BC-Max is closer to on-policy data. We note that the oracle changes between
different instantiations of our weights. This is because the i-th trained policy πi depends on the
choice of weights and so the oracle after the i-th iteration which chooses the best among {πi}i`=1
also depends on the choice of weights. We also note that the gap between the learned and oracle
policy’s performance is smaller when we use the Hedge weights, and that the weighted version has a
bigger gain relative to PPO, showing the efficacy of this approach.

Finally, in Figure 1b we present the savings in size of the Chrome on Android binary, which is the
actual yardstick. Here we cannot easily evaluate the size of the oracle, so we only compare our
policies to PPO, and again observe impressive gains, with the Hedge-weighted variant doing better.
The binary size when compiled with the PPO policy is approximately 213.32 MB.

13

	Introduction
	Inlining for size as a RL problem
	Algorithm
	Empirical evaluation
	Chrome on Android

	Setting and Related work
	Problem setting
	Related work

	Vanilla BC-Max and Regret Bounds
	Necessity of the comparator choice
	Case study: Optimizing a compiler's inlining policy
	The inlining for size problem
	Dataset collection
	Search application targets
	Chrome on Android

