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Abstract

Performance engineering for GPU-accelerated applications is challenging and
time-consuming. We propose WarpDrive, a customizable LLM-driven perfor-
mance analysis and optimization workflow that automatically transforms and tests
GPU applications. We demonstrate its effectiveness by customizing it to four
different optimization levels – compiler options, compiler hints, function-level
transformations, and application-level transformations.

1 Introduction

The increasing prevalence of GPU-accelerated applications has created a pressing need for efficient
performance optimization techniques. While performance analysis tools, such as Nsight Systems
(nsys) [10] and Nsight Compute (ncu) [9], have advanced significantly, CUDA performance en-
gineering remains a challenging and time-consuming task as performance engineers must assess
detailed profile reports and manually implement and evaluate various transformations. While this
process can potentially improve performance by an order of magnitude, it is not only tedious and
error-prone, but also requires significant expertise and resources. Additionally, ensuring performance
portability of legacy applications written and optimized for older GPUs necessitates continuous
profiling, adaptation, and testing.

GPU compilers attempt to automate this process, but have limited scope and rely on heuristics rather
than profile information, making it difficult to implement complex, application-specific optimizations
that require profile information and reasoning across broad sections of the code. The Meta Large
Language Model Compiler (LLM Compiler) [1] enhanced a code generation foundation model with
the understanding of intermediate representations, assembly language, and optimization techniques,
demonstrating the potential for LLMs to act as auto-tuners that can select compiler heuristics and pass
ordering. However, implementing complex optimizations not supported by the compiler remains a
challenge. Moreover, while the LLM Compiler relied on the compiler for correctness, LLM-generated
code can introduce errors necessitating verification after code generation. To address these challenges,
we propose WarpDrive, a customizable performance engineering workflow that automates CUDA
transformations using LLM agents.

2 Technical Approach

WarpDrive is an LLM-assisted profile-guided optimization (PGO) workflow that can be customized
to specific CUDA optimizations. WarpDrive takes as input a user application, analyzes its profile and
program characteristics to determine if an optimization should be applied, creates an optimization
plan, and transforms the code. Finally, it tests the program for correctness and performance.

Figure 1 depicts the WarpDrive workflow, a typical performance engineering process that can be used
to apply different types of optimizations. Each step (in green) in the workflow consists of one or more
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Figure 1: Profile-guided transformation agentic workflow for a single optimization algorithm.

ReAct agents [3] with access to a set of analytical tools (in blue) and provided with a system prompt
customized to the optimization’s specifications (in white). These prompts make use of in-context
learning techniques such as chain-of-thought and few-shot prompting.

We use Streamify optimization as a running example to describe our workflow. CUDA streams allow
for concurrent execution of kernels on a single or multi-GPU system [8]. Streamify identifies indepen-
dent kernels and assigns them to different streams with appropriate inter-stream synchronization to
achieve concurrency and improve GPU resource utilization [13]. WarpDrive performs the following
steps for a given optimization:

(a) Performance Analysis is the optional first step of WarpDrive. It analyzes the execution profile
generated by profiling tools, such as nsys and ncu, to determine whether a given optimization addresses
performance bottlenecks in the input application. For Streamify, this step involves inspecting the
profile to determine whether the application launches multiple kernels on a stream and whether these
kernels exhibit low SM occupancy.

(b) Optimization Analysis involves one or more agents that use analytical tools and LLMs to
analyze the input program in the context of the custom optimization and creates an Optimization
Plan. For Streamify, this step involves multiple sub-steps: (i) building a kernel dependence graph,
(ii) assigning streams to kernels to maximize concurrency, (iii) inserting synchronization nodes to
maintain dependencies, and (iv) creating a schedule of kernels and synchronization nodes.

(c) Code Transformation takes as input the Optimization Plan as well as the baseline program and
leverages the code generation capabilities of LLMs to transform the input program with the aid of
patching tools. The patching tools help limit the output context length and reduce errors.

(d) Verification employs an LLM agent to invoke verification tools and report the outcome – pass
or fail. Such tools include compilers, unit tests, and code sanitizers to check for race conditions or
memory safety violations. The agent may also invoke formal verification tools that check whether the
properties of the generated code meet certain specifications. For Streamify, we test the transformed
program using unit tests and with a tool that compares the new dependence graph to the original
dependence graph to ensure that no dependencies were violated and no kernels were omitted during
the transformation step. If verification fails, the workflow invokes exception handling.
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(e) Exception Handling allows the user to customize actions in the event of test failures. Such
actions include reverting the change and returning control to a previous agent in the flow. This step
may also involve invoking a debugging agent to fix any bugs in the generated code or restarting the
workflow with different hyperparameters (e.g., a different model). Our current implementation simply
reverts the applied change and returns to the user who can choose to restart the workflow with the
same or modified specifications.

(f) Performance Testing measures the speedup of the transformed program over the baseline. The
LLM summarizes the changes in performance metrics and provides an explanation for the speedup or
slowdown if any.

We now describe the tools we implemented for use with the agents in WarpDrive to demonstrate the
four optimizations described in Section 3. Additional custom optimizations or exception handling
techniques may require new tools.

(1) Profiler tools: We use the Nsight GPU profilers as well as an annotation tool that augments
the source code with per-instruction profile information, which includes execution frequency, stalls,
memory bank conflicts, and memory coalescing information.

(2) Analysis tools: We provide python-based tools for use by the optimization analysis agents,
including an occupancy calculator for register target selection [12].

(3) Patch tools: We provide code insertion, deletion, and replacement tools that the Code Trans-
formation Agent can invoke to transform the input program. We also provide a "read-only" marker
that allows the user to demarcate parts of the input program that the model should not modify. The
patch tools ensure that these read-only sections remain unaltered to help limit the impact of errors
introduced. For Streamify, the kernel definitions and host-side verification code are labeled read-only.

(4) Verification tools: We provide a test tool that compiles the transformed program and invokes unit
tests. These unit tests are currently user-provided but may also be generated by a fuzzer. To check the
correctness of the generated program, the verification agent may invoke analytical tools that verify
program properties. For Streamify, our verification tool takes as input the baseline and modified
dependence graphs and checks if the transformed program violates dependencies between kernels.

3 Evaluation

We implemented WarpDrive as a LangGraph based workflow [4] with React agents [3] composed of
the GPT-4-Turbo model [2] and tools as described in Section 2. Our current implementation relies on
in-context learning and does not involve pre-training or fine-tuning the model. We evaluate WarpDrive
by customizing the workflow to perform optimizations at four different levels of complexity:

• Compiler options provided by the programmer guide compiler heuristics for code generation.
Using compiler flags has minimal impact on correctness, as we rely on the compiler to generate
code. An example of an optimization flag in CUDA is -maxrregcount. Because of its significant
impact not only on register spills and instruction-level parallelism, but also occupancy [14], setting
this flag correctly can lead to significant speedups on a GPU. Prior work has looked into the
use of techniques such as autotuning to select optimal register targets for GPU kernels [5]. We
customize WarpDrive to use the occupancy calculator [12] to select the register target based on
profile information and program characteristics. The transformation step in this case sets an
environment variable that applies the compiler flag.

• Compiler hints such as pragmas or cache eviction hints provided by the programmer can also
guide compiler heuristics with low risk to correctness. Unlike compiler options, compiler pragmas
cannot be easily inserted by an autotuner because they require code changes. For evaluation, we
customize the Performance Analysis agent to identify loops of interest in the input kernel and
prompt the Code Transformation step to insert loop unroll pragmas.

• Kernel-level transformations, such as warp specialization and caching frequently used data in
shared memory, sometimes require visibility into host code as well as profile information not
available to the compiler, which must make safe decisions using static information. LLM-driven
kernel-level transformations allow for the automation of otherwise tedious, manual optimizations.
This approach does however have a higher risk of incorrect code generation, which we try to
mitigate using testing, verification, and read-only guards. For evaluation, we customize the
Performance Analysis agent to identify shared memory bank conflicts and prompt the Code
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Transformation step to pad the shared memory allocations and change memory indexing to
address such conflicts.

• App-level transformations include inter-kernel optimizations such as kernel fusion and Streamify
that require insight into overall system profile information, host code, kernel code, and kernel-level
profile information. Since the CUDA compiler only has visibility into a single kernel [11], it
cannot perform inter-kernel transformations. Other high-level compilers similarly lack visibility
into the kernel implementation details. LLM-driven application-level transformations leverage
the broad visibility they have in to the source code and profiler report to make informed code
generation decisions. As detailed in section 2, we customize WarpDrive to implement Streamify.

We evaluate WarpDrive across a set of microbenchmarks written in CUDA and Warp [6]. Table 1
shows the speedup for these microbenchmarks using WarpDrive running on an Ampere A100 GPU[7].
These results show the potential for the use of LLMs to automatically apply CUDA optimizations
that are difficult for compilers or autotuners to perform and too tedious for manual implementation.

Optimization Class Performance Metrics Speedup
Register Target Selection Compiler Options Occupancy, Stalls, Spills 1.59x

Loop Unrolling Compiler Hints Stalls 1.07x
Shared Memory Padding Kernel-level Bank conflicts 5.50x

Streamify App-level Underutilization of GPU Resources 1.38x
Table 1: Experimental results for our microbenchmarks.

4 Challenges and Future Work

WarpDrive harnesses the capabilities of modern AI to perform high-level code transformations that
go well beyond the scope of traditional compiler transformations. Unlike traditional compilers,
which are limited by predefined transformation rules, WarpDrive grants code transformation agents
great latitude in the optimization process, which in the limit could theoretically include wholesale
algorithmic changes to input programs.

While this flexibility could unlock large performance gains, it also presents new challenges. Tradi-
tional compiler algorithms, which typically yield small performance improvements, are designed
to be correct by construction, and ensure that any code transformations performed on a program
preserve the program’s semantics for all possible inputs. In contrast, AI agents are not infallible and
can introduce errors during code generation.

We have begun exploring potential guardrails to help detect AI code generation errors. We argue that
verification and exception handling should be an integral part of the framework, and intimately con-
nected to code transformation agents. For some optimizations, such as the Register Target Selection
and Loop Unrolling case studies in Section 3, verification is trivial, but for other optimizations it is
less clear how to identify logical errors and buggy transformations.

We have already implemented a required "Unit Test" suite that is suitable for catching obvious
errors. We have also implemented user-directed read-only sections that prevent optimization agents
from modifying the code therein. Within modifiable regions, future work should consider using
static invariant checking tools that WarpDrive optimizations can invoke to verify that key program
properties are preserved. For example, for the Streamify case study, we expect the kernel dependency
graph that the optimization agent uses to be isomorphic to the resultant CUDA graph. Where static
tools are insufficient, we can also consider relying on dynamic assertion checks and sanitizer tools
during the verification phase to identify transformation bugs. Finally, future work should consider
how best to involve human expertise in the verification process.

In addition to correctness concerns, WarpDrive is currently limited by context length. While GPT-4-
Turbo’s context length was sufficient for the case studies and micro-benchmarks we explore in this
paper, real-world applications will require agents and tools that facilitate navigation through large
code bases. Future work will aim to address these challenges using static analysis, navigation tools,
and dynamic traces.
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