
Subnormal Number Attacks on Binarized Neural
Networks

Nicolás Berrios
Department of Computer Science

Catholic University of Chile
Santiago, Chile

Abstract

Binarized Neural Networks (BNNs) have emerged as a sensible quantization
method to reduce compute costs at inference time. As with other machine learning
systems deployed in practice, they are susceptible to side-channel attacks that can
be leveraged to reveal their internal characteristics and architecture. Previous work
on side-channels in BNNs has been limited to the physical domain, requiring a
powerful adversary with granular access to the system and advanced hardware
tools. In this paper, we show how the inherent binary weight distribution of BNNs
make them susceptible to timing attacks in a practical, software-based threat model.
We achieve this by leveraging abnormal timing differences in subnormal number
arithmetic. Our contributions are two-fold; (a) we show how carefully crafted
inputs can produce a time signal strong enough to reveal all the weights of an
individual neuron and (b), we scale the attack to infer a fraction of the input layer
of a BNN. We conclude by assessing the challenges of BNN implementations in
hopes that our findings will motivate safer deployments of BNNs.

1 Introduction

The rising computational cost of training state-of-the-art machine learning (ML) systems has intensi-
fied the focus on safeguarding production deployments. As with any theoretical concept deployed in
practice, seemingly benign inherent characteristics of computer systems could reveal side-channels of
information about internal computations [1, 2]. Attacks that leverage these sources of data to degrade
the security of a system are known as side-channel attacks (SCAs) [3]. In the ML systems literature,
specifically on neural networks (NN), several SCAs have been proposed [4–11].

On the other hand, another consequence of the larger need for compute is the search for optimizations
that reduce inference time. A prominent architecture with significant impact in compute power is
known as Binarized Neural Networks (BNN) [12], which compress NN weights to be represented
through binary values. Previous SCAs on BNNs have been limited to what we believe to be a generous
threat model for the adversary, involving granular physical access for power [13], electromagnetic
[14, 15] and timing [16] measurements.

In this work, we introduce a novel attack under black-box software access to a BNN. We do so by
leveraging the significant presence of 0s in their architecture coupled with subnormal number inputs
(i.e.: 10−318). This approach stems from the abnormal runtime of subnormal number arithmetic,
which is significantly slower than normal floating point number operations across multiple architec-
tures [17]. This anomaly creates a distinguishing time signal that can be detected in the software
domain, which we first exploit to reveal the weight values of a single neuron and later a fraction of
the input layer of a complete BNN.

Machine Learning for Systems Workshop at NeurIPS 2024.

2 Experiments

2.1 Attacking a neuron

Given a set of binary (0|1) weights W = [w0, ..., wm], a bias b and an activation function f , we
define a single binary neuron or perceptron as P = (W, b, f). We can perform inference on this
architecture by evaluating an input X = [x0, ..., xm] as follows:

P (X) = f

(
m∑
i=0

(wixi) + b

)

In this section, we propose an attack that leverages the timing abnormalities in subnormal number
arithmetic to define inputs Xn that when evaluated by P reveal the value of a given wn ∈ W .1 We
achieve this as an adversary limited to black-box measurements of the inference runtime T (P (Xn))
and no access to output. To perform our attack, given a target weight index n, we craft a probe input
Xn:

∀xi ∈ Xn, xi =

{
10−318, if i = n,

0, else.

For this input, the inference runtime distribution conditioned on values of wn, can be modeled by the
following probability2, for low values of δ:

T (P (Xn)) | (wn = 1) ≥δ T (P (Xn)) | (wn = 0)

This results from the weight multiplication outputting either a subnormal float or a normal float
conditioned on the value of wn.

m∑
i=1

(wixi) = 10−318 ∗ wn =

{
10−318, if wn = 1,

0, if wn = 0.

Computationally, this forces the system to perform additional subnormal operations when the target
weight wn = 1, as illustrated in Table 1.

Algorithm step wn = 0 wn = 1
N + S+ N× S × N+ S+ N× S×

Weight multiplication (wixi) m− 1 1 m− 1 1
Weighted sum (

∑m
i=1(wixi)) m m

Bias addition (+b) 1 1

Table 1: Operation distribution (N = Normal float operation, S = Subnormal float operation)

Notably, before reaching the activation function, a neuron where wn = 1 will perform m + 1
additional subnormal number sums than one where wn = 0. Since subnormal number sums are
slower than normal sums, this generates a timing signal that can be leveraged to infer the value of wn.

An attacker with runtime measurements can perform multiple queries to find a threshold τ , that holds
for the confidence interval 1 − δ, where the probability distributions T (P (Xn)) | (wn = 1) and
T (P (Xn)) | (wn = 0) can be linearly separated to infer the value of wn, as follows:

wn =

{
1, if T (P (Xn)) ≥ τ,

0, else.

Finally, the same analysis can be repeated for every index n to reveal all the weights wn ∈ W .

1For consistency across our experiments, including the next section, we use b = 1 and f(x) = x > |W |.
2For simplicity, we denote A ⋆δ B as the δ-bounded probability Pr[A ⋆ B] ≥ 1− δ for a given ⋆ operator.

2

2.1.1 Evaluation

We evaluate our attack by performing queries to a black-box perceptron model in a Intel i7 CPU.
We define two perceptrons P = (W, b, f), wn = 0 and P ′ = (W ′, b, f), w′

n = 1 with a conservative
m = 8. For each measurement, we flip a coin to select a perceptron and query it 1000 times with
our probe Xn, collecting the total time in nanoseconds. We plot these measurements in Figure 1 and
evaluate the accuracy of a simple linear threshold through a ROC curve in Figure 2.

3.75 4.0 4.25 4.5
·106

0

500

1,000

250

750

Time (ns)

Fr
eq

ue
nc

y
(N

)

P = (W, b, f)

P ′ = (W ′, b, f)

Figure 1: Runtime distribution for P and P ′.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

ROC curve (area = 0.66)

Figure 2: ROC curve on detecting wn’s value.

2.2 Attacking a layer

We learn from attacking a single binary neuron that the value of the n-th index weight is correlated to
the runtime of performing inference of our probe Xn. On a complete BNN, our input Xn will be
evaluated on multiple neurons and as such, the runtime T (BNN(Xn)) will be correlated to the sum
of the inference runtimes of every neuron. Intuitively, for the input layer I , it will linearly scale with
the number of 1s present on n-th index weights of neurons in the layer. Particularly, for our probe
Xn, the runtime is the fastest when all the n-th indexes are 0 and is the slowest when all of them are
1. In other cases, we can use the linear correlation to infer the proportion of the weights (particularly,
the number of n-th index 1s), although not which neuron they correspond to in the layer.

2.2.1 Evaluation

We evaluate our attack performing local queries into a blackbox BNN model in the same processor.
We define 4 neural networks with 8 input neurons, and vary the number of 1s in their n-th indexes.
We then query T (BBN(Xn)) to get the average runtime of 100 queries. As illustrated in Figure 3,
we observe a linear relationship between the number of wn = 1 and the runtime. In Figure 4, we
analyze the success rate of our attack with a varying input layer size |I|. We assume access to an
oracle providing the exact runtime and calculate the percentage of weights in I that could be revealed.

0 2 4 6

3.345

3.350

3.355

3.360

3.365

3.370
·106

Number of neurons with value 1 in index n (|wn = 1|)

Ti
m

e
(n

s)

Time (ns)
Linear trendline

Figure 3: Average runtime for varying wn values.

2 4 6 8 10

0

50

100

25

75

Number of input layer neurons (|I|)

Fr
ac

tio
n

of
I

kn
ow

n
(%

)

y = 100 ∗ |I|+1|
2|I|

Figure 4: Best-case success rate v.s. |I|.

For our success rate modeling in Figure 4, we assume that binary weight values are randomly
distributed. We model the success rate as |I|+1|

2|I|
. Notably, 2|I| represents the number of possible

combinations of 0s and 1s in the input layer. The nominator |I|+ 1 stems from our attack being able
to distinguish |I| cases plus the all-0 case. Formally, for every count c = |wn = 1| there are

(|I|
c

)
possible combinations, and thus access to exact runtime yields a 1

(|I|c)
probability of being correct.

Then, the expected number of correct cases can be modeled as
∑|I|

c=0

(|I|
c

)
1

(|I|c)
=
∑|I|

c=0 1 = |I|+ 1.

3

3 Discussion

Our experiments reveal that subnormal number inputs generate a timing side-channel that provides
non-trivial advantage for an adversary to infer the binary weights of a single neuron in a BNN. When
scaling our attack to the input layer, we are able to continue detecting the timing signal distributed
in multiple neurons, revealing upwards of 50% of the input layer weight values for a BNN with 3
input layer neurons. Although our attack achieves a lower accuracy compared to other side-channels
performed through hardware [13–16], to the best of our knowledge, we are the first to show a BNN
side-channel attack that achieves weight extraction through timing measurements at the software
level.

3.1 Limitations

A downside of our attack at the input layer-level is that accuracy degrades significantly as the number
of neurons grow, even under an hypothetical best case assumption of exact runtime access. This
stems from the number of possible combinations of 0s and 1s scaling exponentially with the size of
the input layer, making distinguishing the ratio not enough of an advantage for accurately revealing a
significant fraction of I .

Another limitation of our work is that it requires the system to allow for floating point input to
leverage the abnormalities of subnormal float arithmetic. We believe this not to be an unreasonable
assumption, since by design some neurons could account for the input precision loss at the input
layer, and as such, receiving higher precision input without immediately bounding it to binary could
be practical on real deployments.

On the other hand, we find our attack to be also limited to the binary representation of BNNs encoded
as (0|1) and not the other prominent version of (−1|1), given that it is directly dependent on the
notable distribution of 0s in the neural network.

Finally, for this same reason, we find our attack to be implicitly limited to BNNs representations, and
not practically applicable to NNs of higher precision, which would not present a binary-distinguishable
distribution of weights.

3.2 Future work

We believe future work should be focused on providing statistical models that can both; (a) improve
the success rate of our attack as the number of input layers neuron grow, and (b) extend the extraction
to further hidden layers of the network.

We also note that our experiments included multiple repeated queries as a simple method to amplify
the timing signal. This is a sensible approach when performing a realistic software-based timing
attack which may be subjected to background noise that could obscure signals at the nanosecond
level. Nonetheless, exploring additional time signal amplification techniques to reduce the number of
queries would be valuable for increasing the effectiveness of our attack and determining its feasibility
by a remote network adversary.

Finally, we find that further exploring the impact of subnormal numbers on other types of NNs,
particularly on ones that allow for floating point precision, represents a novel area worthy of further
research.

4 Conclusion

In this paper, we study how subnormal number inputs degrade the security of BNNs against an
adversary with runtime access. We successfully extract the weights of a single neuron with non-trivial
accuracy and show how the timing side-channel persists on multiple-neuron inference, allowing
for an adversary to extract fragments of the input layer. We achieve this with runtime access to a
locally deployed black-box BNN. To the best of our knowledge, we are the first to show an attack that
achieves time-based weight extraction on a BNN in the software domain. We hope our findings help
motivate safer deployments of BNNs and further raise awareness of the potential risks of side-channel
attacks on neural network systems.

4

References

[1] M. Randolph and W. Diehl, “Power side-channel attack analysis: A review of 20 years of study
for the layman,” Cryptography, vol. 4, no. 2, p. 15, 2020.

[2] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The em side—channel (s),” in
Cryptographic Hardware and Embedded Systems-CHES 2002: 4th International Workshop
Redwood Shores, CA, USA, August 13–15, 2002 Revised Papers 4. Springer, 2003, pp. 29–45.

[3] F.-X. Standaert, “Introduction to side-channel attacks,” Secure integrated circuits and systems,
pp. 27–42, 2010.

[4] L. Batina, S. Bhasin, D. Jap, and S. Picek, “{CSI}{NN}: Reverse engineering of neural network
architectures through electromagnetic side channel,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 515–532.

[5] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional neural networks through
side-channel information leaks,” in Proceedings of the 55th Annual Design Automation Confer-
ence, 2018, pp. 1–6.

[6] V. Duddu, D. Samanta, D. V. Rao, and V. E. Balas, “Stealing neural networks via timing side
channels,” arXiv preprint arXiv:1812.11720, 2018.

[7] M. Méndez Real and R. Salvador, “Physical side-channel attacks on embedded neural networks:
A survey,” Applied Sciences, vol. 11, no. 15, p. 6790, 2021.

[8] L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I know what you see: Power side-channel attack
on convolutional neural network accelerators,” in Proceedings of the 34th Annual Computer
Security Applications Conference, 2018, pp. 393–406.

[9] H. T. Maia, C. Xiao, D. Li, E. Grinspun, and C. Zheng, “Can one hear the shape of a neural
network?: Snooping the gpu via magnetic side channel.” in USENIX Security Symposium, 2022,
pp. 4383–4400.

[10] Y. Xiang, Z. Chen, Z. Chen, Z. Fang, H. Hao, J. Chen, Y. Liu, Z. Wu, Q. Xuan, and X. Yang,
“Open dnn box by power side-channel attack,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 67, no. 11, pp. 2717–2721, 2020.

[11] K. Yoshida, T. Kubota, S. Okura, M. Shiozaki, and T. Fujino, “Model reverse-engineering attack
using correlation power analysis against systolic array based neural network accelerator,” in
2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020, pp. 1–5.

[12] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural networks,”
Advances in neural information processing systems, vol. 29, 2016.

[13] S. Moini, S. Tian, D. Holcomb, J. Szefer, and R. Tessier, “Power side-channel attacks on bnn
accelerators in remote fpgas,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 11, no. 2, pp. 357–370, 2021.

[14] H. Yu, H. Ma, K. Yang, Y. Zhao, and Y. Jin, “Deepem: Deep neural networks model recovery
through em side-channel information leakage,” in 2020 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, 2020, pp. 209–218.

[15] V. Yli-Mäyry, A. Ito, N. Homma, S. Bhasin, and D. Jap, “Extraction of binarized neural network
architecture and secret parameters using side-channel information,” in 2021 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2021, pp. 1–5.

[16] S. Maji, U. Banerjee, and A. P. Chandrakasan, “Leaky nets: Recovering embedded neural
network models and inputs through simple power and timing side-channels—attacks and
defenses,” IEEE Internet of Things Journal, vol. 8, no. 15, pp. 12 079–12 092, 2021.

[17] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham, “On subnormal
floating point and abnormal timing,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 623–639.

5

	Introduction
	Experiments
	Attacking a neuron
	Evaluation

	Attacking a layer
	Evaluation

	Discussion
	Limitations
	Future work

	Conclusion

