
Reward Copilot for RL-driven Systems Optimization

Karan Tandon
Microsoft Research, India

karantandon@microsoft.com

Manav Mishra
IISER Bhopal, India

mishra20@iiserb.ac.in

Gagan Somashekar
Microsoft365 Research, USA
gsomashekar@microsoft.com

Mayukh Das
Microsoft365 Research, India
mayukhdas@microsoft.com

Nagarajan Natarajan
Microsoft Research, India
nagarajn@microsoft.com

Abstract

Systems optimization problems such as workload auto-scaling, kernel parameter
tuning, and cluster management arising in large-scale enterprise infrastructure are
becoming increasingly RL-driven. While effective, it is difficult to set up the RL
framework for such real-world problems – designing correct and useful reward
functions or state spaces is highly challenging and needs a lot of domain expertise.
Our proposed novel REWARD COPILOT solution can help design suitable and
interpretable reward functions guided by client-provided specifications for any RL
framework. Using experiments on standard benchmarks as well as systems-specific
optimization problems, we show that our solution can return reward functions with
a certain (informal) feasibility certificate, in addition to pareto-optimality.

1 Introduction

Systems optimization problems such as workload auto-scaling [Luo et al., 2022, Yang et al., 2013,
2014, Rzadca et al., 2020], kernel parameter tuning [Akgun et al., 2020], and cluster resource and
configuration management [Aron et al., 2000, Radiskhlebova et al., 2019, Maurer et al., 2013] arising
in large-scale enterprise infrastructure are becoming increasingly RL-driven [Somashekar et al.,
2024, Karthikeyan et al., 2023]. The success of RL-driven systems optimization crucially hinges on
designing a single reward function that involves competing objectives (e.g., throughput and latency)
and feedback from multiple measurements [Grzes, 2017, Hu et al., 2020, Goyal et al., 2019], which
often requires domain expertise.

Large Language Models (LLMs) are capable of generating complex code, and have recently been
applied in the context of generating reward functions [Yu et al., 2023, Ma et al., 2023, Xie et al., 2024].
Text2Reward [Xie et al., 2024] uses LLMs to effectively create dense, interpretable reward programs
by transforming task descriptions into reward structures. However it relies on few-shot learning and
human-guided refinement limiting its applicability in more complex systems tasks. Another approach,
Eureka [Ma et al., 2023] takes an evolutionary optimization approach combined with LLM-driven
generation, enabling zero-shot reward design. While effective on many RL benchmarks, deploying
Eureka in real-world systems is difficult due to the need for domain-specific fitness functions, which
is as challenging as reward design itself. In real deployments, it is more practical and consistent
for clients to provide requirements or problem specifications (specs) that qualify the nuances and
constraints of the environment and target metrics.

We propose REWARD COPILOT, a framework that directly incorporates client-provided specifications
(specs) to guide generation and reflective refinement of interpretable reward functions that lead to
superior policies that are both Pareto-optimal and have feasibility certificates that we demonstrate,
via extensive evaluations on standard RL benchmarks and real systems optimization tasks.

Machine Learning for Systems Workshop at (NeurIPS 2024).

2 Methodology

Problem Setting. The reward design problem (RDP), defined by [Barto et al., 2009], aims to return
a shaped reward function for a ground-truth reward function that may be challenging to design or
optimize directly. Formally, RDP as a tuple P = ⟨M,ℜ, πM ⟩, where M = (S,A, T) represents the
world model, S and A the state and action spaces resp., and T the transition function. The space of
reward functions ℜ is mapped to policies Π via a learning algorithm ΨM () : ℜ → Π, which induces
a policy π ∈ Π that optimizes reward r ∈ ℜ in the associated Markov Decision Process (MDP)
(M, r). Assuming ∃G a global quality metric, the RDP’s objective is to design a reward function
r ∈ ℜ that produces a policy π∗

r ∈ Π which maximizes the global quality metric G; π∗
r ⪰

G
π∗
ℜ\r.

2.1 The REWARD COPILOT Framework

Figure 1: REWARD COPILOT pipeline operates in three stages – Reward candidate generation:
produces candidate reward function code and trains respective policies, Specs Evaluation: filters
candidates for spec compliance and ranks them, & Prompt Reflection: refines the generation process.

Our REWARD COPILOT framework (Alg 1) aims to intelligently design and recommend interpretable
and (near) optimal reward functions, through an iterative three-step process: Reward candidate
generation, specs evaluation, and prompt reflection (Figure 1). These steps work together to iteratively
refine the reward code. Though [Ma et al., 2023] is conceptually similar, yet instead of relying on
a predefined fitness function F to evaluate reward function quality, we employ the feasibility and
optimality specs checker. This component approximates a surrogate fitness function, eliminating the
need for users to manually define it, which can be challenging in system-level optimization. The
LLM starts by ingesting the task description τ , a Pythonic environment code E to set the syntax and
context, and an initial prompt P to initiate the code generation. Note that, environment source code
often reveals the structure of the process flow and variable, which may help with reward generation.
For cases where a self-contained code is not available, the APIs can be leveraged to estimate the
structure of variables.
Algorithm 1: REWARD COPILOT algorithm

1: Input: Task description τ , environment code E, initial task promptP , Feasibility & Optimality Specs Sf ,So

2: Output: Optimal reward functionR ∈ ℜ
3: Initialize LLML ← τ,E.
4: repeat{// Reward candidate generation}
5: Generate k reward function candidates {r1, . . . , rk} ← Lτ,E(P).

6: Evaluate candidates using specs.R,RC ←Ranker({r1, . . . , rk},Sf ,So) {Specs Evaluation (Alg 2); RC = fine-grained traces of individual
reward components}

7: Reflect on results and refine LLM prompt. P ← Refine(P,R,RC) {Prompt reflection}
8: until an optimal reward function is found or convergence is achieved

Reward candidate generation. The LLM [Lτ,E(P)] then generates k independently sampled
candidate reward functions {ri}k1 ∈ ℜ. Independently sampling make having syntactic errors in all
of them highly unlikely and enhances the diversity among the candidates as well, thereby increasing
the likelihood of finding valid reward functions. We then train k policies for the subsequent modules.

Specs Evaluation. Post-training, the learned policies {π∗
1 , . . . , π

∗
k} are evaluated on metrics M

induced from user-provided specs (Sf ,So). The metrics are tracked throughout the policy learning
process to avoid overhead from real-world system deployments. This is analogous to the approach in
[Yang et al., 2019], which involves a learning and adaptation phase to optimize policy performance.

Feasibility spec evaluator. This phase involves a filtration of those policies that satisfy a minimum
feasibility with regard to the system specs provided by the user. This is done with the intention to
filter out those candidates that satisfy some minimum spec eligibility. In the feasibility spec checker,

2

each policy is evaluated using a score function S : M → [0, 1], where a score of 1 is assigned if no
specification violations occur and 0 otherwise. Policies with an average score exceeding a predefined
feasibility threshold m are retained for further evaluation. For this work, a feasibility threshold of
0.70 is employed, ensuring that only k′ policies meeting the minimum constraint satisfaction criteria
advance to the optimality specifications phase.

RANKER model. The filtered candidate reward functions are evaluated to identify the relatively
optimal reward configuration using a proposed rank-based preference algorithm. Initially, users
assign a preference rank to each metric they wish the system to prioritize. Once feasibility constraints
are established, the algorithm selects the optimal candidate among the feasible options. This approach
operates by comparing each specification metric in a pairwise fashion based on user-provided rankings
and formulates the problem as a two-player game (Alg. 2 in Appendix A). The Win-Selector
function evaluates and compares candidates based on their ranked metrics with an n% margin. For
more detailed steps see Alg 3 in Appendix A. The winner candidate reward function from Ranker, is
said to be a surrogate for the fitness function, without the reliability on the user to provide a heuristic
fitness function. This best candidate reward function is then used to generate a feedback prompt for
further LLM refinement through the prompt reflection step.

Prompt reflection. In order to ground the reward function to the LLM, the best reward candidate
reward function must be able to put into words the quality of the generated rewards. The selected
reward function undergoes further refinement through prompt reflection. The specs evaluation step
serves as a measure of a relative ground truth in order to assess and determine the best reward function
in that evolution/iteration step. Textual feedback on policy performance and reward component
dynamics is automatically generated, providing insights into how well the reward function aligns
with system objectives. This is done by leveraging intermediate policy checkpoints to track and
evaluate the individual components of the reward function during the policy training, leading to
adjustments that improve reward synthesis in subsequent iterations. This feedback reflection process
is important for the reward optimization process, as it offers the LLM module insights into how well
the RL algorithm optimizes individual reward components. The Spec checker, ranker and the prompt
reflection steps together implicitly nudge us closer to the pareto-front. This enables Reward Copilot
to produce more precise reward edits and develop reward functions aligned with the application.

3 Evaluation Setup

We evaluate REWARD COPILOT on two test environments—a Gymnasium [Towers et al., 2024]
environment and a systems benchmark—against the state-of-the-art Eureka baseline and hand-crafted
reward functions. We use Stable Baselines Jax (sbx) Raffin et al. [2021] for policy training.

Redis with Yahoo Cloud Serving Benchmark (YCSB). Redis [Redis, 2024] with YCSB [Cooper
et al., 2010] evaluates the system’s efficiency in a real-world cloud-serving environment. Configura-
tion tuning of Redis is challenging due to its different use cases, parameter inter-dependencies and
their sensitivity to workload, or multiple (conflicting) objectives like throughput, latency, memory
efficiency etc. Manually crafting a suitable reward function (or even a fitness function) is extremely
challenging. We tune four integer parameters of Redis, namely maxmemory, maxmemory-samples,
zset-max-ziplist-entries and hz to minimize the time taken to process the workload generated
by YCSB (see Appendix B.1 for more details where Fig. 5 shows the spec chart for Redis.)

Classic CartPole problem. The CartPole problem is a standard benchmark in reinforcement learning
where the goal is to balance a straight pole on a moving cart. It comprises a continuous state
space, represented by 4 variables: cart position, cart velocity, pole angle, and pole angular velocity.
The action space is discrete, consisting of two actions: applying a force in either direction, left or
right. The objective is to maximize the time the pole remains upright by keeping the pole angle
within a specified range. We consider three metrics for spec evaluation, namely duration, cart
displacement, pole displacement (see Appendix B.2 for more details). Figure 6 shows the
spec chart being used for CartPole.

4 Results

To evaluate the effectiveness of REWARD COPILOT in skill and reward learning, we benchmark its
performance against a human-designed reward and Eureka’s approach. For the CartPole environment,

3

three normalized specifications were considered: episode duration, x-displacement of the cart, and
pole angle displacement over the entire episode. These metrics were ranked based on preferences, as
illustrated in Figure 2(a). For the Redis-YCSB benchmark, the primary metric used was the mean
throughput per episode, as shown in Figure 2(b). REWARD COPILOT’s performance evolution across
both benchmarks is demonstrated by tracking the iteration progress of the reward functions. At each
iteration step, k = 10 candidate reward functions are sampled and subjected to a feasibility check,
requiring a minimum specification score of m = 0.7 (i.e., a 70% threshold) during training.

(a) CartPole results (b) Redis results

Figure 2: REWARD COPILOT results

(a) CartPole results (b) Redis results

Figure 3: Eureka results

Figure 2 illustrates the distribution of candidate rewards for Cartpole and Redis using a violin plot for
the reward copilot framework, with the black dotted line marking the feasibility threshold. Reward
candidates exceeding this threshold, denoted by k′, are selected for ranking. The line plot depicts the
highest-performing reward function at each iteration, which informs the final performance prompt.
Figure 3 highlights Eureka’s performance, which is evaluated for specification satisfaction. Unlike
REWARD COPILOT, Eureka’s results do not feature a feasibility threshold, as it is not used in their
framework. The analysis shows a decline in Eureka’s reward quality when specification satisfaction
is considered during training, attributed to the Eureka’s lack of explicit handling of specification
violations. Despite not having direct access to the fitness function, REWARD COPILOT achieves
comparable reward quality (see Appendix C for the generated reward function codes).

Figure 4: Comparison among
Reward Copilot, Eureka and
Human-designed rewards of
human-normalized (1) scores
evaluated on common fitness fn.
(2) specs satisfaction rate.

We compare REWARD COPILOT’s performance against 2 baselines
- (1) Eureka’s reward function and (2) human-designed reward
across 100 evaluation runs on the generated reward functions. For
CartPole, we consider the environment’s standard reward as the
human-designed one, while for Redis, we use a linear combination
of latency and throughput. Figure 4 compares REWARD COPILOT
and Eureka, using human-designed rewards as the basis. Top plot

1 displays the human-normalized score on the fitness function
for both CartPole and Redis. It highlights REWARD COPILOT’s
ability to generate effective reward functions without explicit de-
pendence on a fitness function. Bottom Plot 2 compares the
mean specs satisfaction rates between then REWARD COPILOT
significantly outperforms Eureka in this case, underlining the lim-
itation of Eureka in adhering to client specs. LLM-generated code
plays an indispensable role in smartly identifying complex assim-
ilation of attributes and bounds into the reward function compared
to beyond what traditional human design can do, as evident in
tasks like Redis, where REWARD COPILOT can lead to higher
quality rewards and better spec satisfaction.

Conclusion. We present REWARD COPILOT to automatically
design interpretable reward functions for RL-driven system op-
timization problem specifications. REWARD COPILOT can seamlessly design reward functions,
which helps learn policies that are both Pareto-optimal and have a feasibility certificate without the
limiting assumptions of existing approaches. Additionally, fine-tuning the LLM on a range of systems
problems can further enhance its ability to generate contextually relevant reward functions, potentially
leading to improved optimization outcomes. Preliminary evaluations demonstrate that REWARD
COPILOT is comparable or better than all baselines. Assessing across a variety of Gymnasium and
MuJoCo environments, and expanding to other system benchmarks are immediate next steps.

4

References
I. U. Akgun, A. S. Aydin, and E. Zadok. KMLib: Towards machine learning for operating systems. In

Proceedings of the 2020 On-Device Intelligence Workshop, co-located with the MLSys Conference,
February 2020. Refereed abstract+poster.

M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reserves: A mechanism for resource management
in cluster-based network servers. In Proceedings of the 2000 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, pages 90–101, 2000.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(5):
834–846, 1983. doi: 10.1109/TSMC.1983.6313077.

A. G. Barto, R. L. Lewis, and S. Singh. Where do rewards come from. 2009. URL https:
//api.semanticscholar.org/CorpusID:14951500.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking cloud serving
systems with ycsb. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
’10, page 143–154, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781450300360. doi: 10.1145/1807128.1807152. URL https://doi.org/10.1145/1807128.
1807152.

P. Goyal, S. Niekum, and R. J. Mooney. Using natural language for reward shaping in reinforcement
learning. arXiv preprint arXiv:1903.02020, 2019.

M. Grzes. Reward shaping in episodic reinforcement learning. 2017.

Y. Hu, W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, F. Wu, and C. Fan. Learning to utilize shaping
rewards: A new approach of reward shaping. Advances in Neural Information Processing Systems,
33:15931–15941, 2020.

A. Karthikeyan, N. Natarajan, G. Somashekar, L. Zhao, R. Bhagwan, R. Fonseca, T. Racheva, and
Y. Bansal. {SelfTune}: Tuning cluster managers. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages 1097–1114, 2023.

J. Liu, Y. Ma, C. Chen, and Z. Yu. Atr: Auto-tuning configurations of redis via ensemble learning.
In 2020 6th International Conference on Big Data and Information Analytics (BigDIA), pages
104–112, 2020. doi: 10.1109/BigDIA51454.2020.00025.

S. Luo, H. Xu, K. Ye, G. Xu, L. Zhang, G. Yang, and C. Xu. The power of prediction: microservice
auto scaling via workload learning. In Proceedings of the 13th Symposium on Cloud Computing,
pages 355–369, 2022.

Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and A. Anand-
kumar. Eureka: Human-level reward design via coding large language models. arXiv preprint
arXiv:2310.12931, 2023.

A. Mahgoub, P. Wood, A. Medoff, S. Mitra, F. Meyer, S. Chaterji, and S. Bagchi. SOPHIA: Online
reconfiguration of clustered NoSQL databases for Time-Varying workloads. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages 223–240, Renton, WA, July 2019. USENIX
Association. ISBN 978-1-939133-03-8. URL https://www.usenix.org/conference/atc19/
presentation/mahgoub.

A. Mahgoub, A. M. Medoff, R. Kumar, S. Mitra, A. Klimovic, S. Chaterji, and S. Bagchi. OPTIMUS-
CLOUD: Heterogeneous configuration optimization for distributed databases in the cloud. In 2020
USENIX Annual Technical Conference (USENIX ATC 20), pages 189–203. USENIX Association,
July 2020. ISBN 978-1-939133-14-4. URL https://www.usenix.org/conference/atc20/
presentation/mahgoub.

M. Maurer, I. Brandic, and R. Sakellariou. Adaptive resource configuration for cloud infrastructure
management. Future Generation Computer Systems, 29(2):472–487, 2013.

5

https://api.semanticscholar.org/CorpusID:14951500
https://api.semanticscholar.org/CorpusID:14951500
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://www.usenix.org/conference/atc19/presentation/mahgoub
https://www.usenix.org/conference/atc19/presentation/mahgoub
https://www.usenix.org/conference/atc20/presentation/mahgoub
https://www.usenix.org/conference/atc20/presentation/mahgoub

A. A. Radiskhlebova, A. B. Vavrenyuk, A. S. Rusakova, and V. V. Makarov. Study of the possibilities
of using virtualization tools to optimize the cluster resources management. In 2019 IEEE Confer-
ence of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pages
310–314. IEEE, 2019.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

Redis. Redis: A persistent memory database, 2024. URL https://redis.io. Accessed: 2024-10-
28.

K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek, P. Nowak, B. Strack,
P. Witusowski, S. Hand, et al. Autopilot: workload autoscaling at google. In Proceedings of the
Fifteenth European Conference on Computer Systems, pages 1–16, 2020.

G. Somashekar, A. Suresh, S. Tyagi, V. Dhyani, K. Donkada, A. Pradhan, and A. Gandhi. Reducing
the tail latency of microservices applications via optimal configuration tuning. In 2022 IEEE
International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), pages
111–120, 2022. doi: 10.1109/ACSOS55765.2022.00029.

G. Somashekar, K. Tandon, A. Kini, C.-C. Chang, P. Husak, R. Bhagwan, M. Das, A. Gandhi, and
N. Natarajan. OPPerTune: Post-Deployment configuration tuning of services made easy. In
21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24), pages
1101–1120, Santa Clara, CA, Apr. 2024. USENIX Association. ISBN 978-1-939133-39-7. URL
https://www.usenix.org/conference/nsdi24/presentation/somashekar.

M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. De Cola, T. Deleu, M. Goulão, A. Kallinteris,
M. Krimmel, A. KG, et al. Gymnasium: A standard interface for reinforcement learning environ-
ments. arXiv preprint arXiv:2407.17032, 2024.

T. Xie, S. Zhao, C. H. Wu, Y. Liu, Q. Luo, V. Zhong, Y. Yang, and T. Yu. Text2reward: Reward
shaping with language models for reinforcement learning. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=tUM39YTRxH.

J. Yang, C. Liu, Y. Shang, Z. Mao, and J. Chen. Workload predicting-based automatic scaling in
service clouds. In 2013 IEEE Sixth International Conference on Cloud Computing, pages 810–815.
IEEE, 2013.

J. Yang, C. Liu, Y. Shang, B. Cheng, Z. Mao, C. Liu, L. Niu, and J. Chen. A cost-aware auto-scaling
approach using the workload prediction in service clouds. Information Systems Frontiers, 16:7–18,
2014.

R. Yang, X. Sun, and K. Narasimhan. A generalized algorithm for multi-objective reinforcement learn-
ing and policy adaptation. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf.

W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-T. L. Chiang, T. Erez, L. Hasen-
clever, J. Humplik, et al. Language to rewards for robotic skill synthesis. arXiv preprint
arXiv:2306.08647, 2023.

J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang, T. Cheng, L. Liu, M. Ran,
and Z. Li. An end-to-end automatic cloud database tuning system using deep reinforcement
learning. In Proceedings of the 2019 International Conference on Management of Data, SIGMOD
’19, page 415–432, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450356435. doi: 10.1145/3299869.3300085. URL https://doi.org/10.1145/3299869.
3300085.

6

http://jmlr.org/papers/v22/20-1364.html
https://redis.io
https://www.usenix.org/conference/nsdi24/presentation/somashekar
https://openreview.net/forum?id=tUM39YTRxH
https://proceedings.neurips.cc/paper_files/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
https://doi.org/10.1145/3299869.3300085
https://doi.org/10.1145/3299869.3300085

A Additional Method Details

The Ranker algorithm ranks multiple reward functions based on user-defined specifications. The
procedure for the Ranker algorithm is detailed in Algorithm 2. Using the win-selector module, it
executes a pairwise round-robin tournament to determine the best reward function.

Algorithm 2: Ranker - Rank Preference-Based Reward Selection
1: Input: {r1, . . . , rk} candidates, Specs Sf ,So

2: Output: Optimal reward functionR
3: {π1, . . . , πk}, {RC

1 , . . . ,R
C
k } ← Train policies for {r1, . . . , rk} {RC

i = Reward component traces}
// Each candidate competes against all others in a round-robin fashion.

4: for each pair of candidates (ri, rj) do
5: Use Win-Selector(ri, rj , πi, πj ,Sf ,So) to determine the winner between them. {(Alg. 3)}
6: end for
7: R← candidate with the highest score (maximum wins) is selected as the optimal reward.
8: returnR,RC

R

The win-selector module receives a list of metrics ranked by importance, as specified by the user.
For each metric, it assesses dominance using a threshold margin n%: if one reward function surpasses
another by at least n%, it is deemed dominant, and that reward function is marked as the winner. If
no dominance is established, the comparison proceeds to the next metric in the hierarchy, continuing
until a winner is determined.

Algorithm 3: Win-Selector
1: Input: Candidates ra and rb, Specs Sf ,So, Policies πa, πb, Quality margin n
2: Output: Winner between (ra, rb)

3: Compute ranked metrics for rx; Mx = [m
(x)
1 ,m

(x)
2 ,m

(x)
3 , . . .]← SatisfySpec(πx,Sf ,So)

4: for each metric dimension mi in M do
5: if m(a)

i is better than m
(b)
i by at least n% then

6: return ra as the winner
7: else if m(b)

i is better than m
(a)
i by at least n% then

8: return rb as the winner
9: else

10: Proceed to evaluate the next metric mi+1

11: end if
12: end for

B Test Domains and Environment Designs

B.1 Redis

Redis is an open-source, in-memory data structure store that can be used as a database, cache,
and message broker. Configuration tuning of Redis is challenging due to its different use cases,
parameters’ sensitivity to workload, and parameter interdependencies. Many prior works tackle this
challenge by employing machine learning and optimization algorithms [Mahgoub et al., 2019, Liu
et al., 2020, Mahgoub et al., 2020, Somashekar et al., 2022]. However, Redis’ falls into the category
of systems whose performance involves multiple, often conflicting objectives like throughput, latency,
memory efficiency, data persistence and consistency. Hence, framing a reward function that captures
all these objectives is challenging. Moreover, some configuration changes may provide immediate
performance benefits but lead to long-term issues (e.g., increased memory fragmentation). Prior works
tackle this by handcrafted reward functions which only address some of these objectives [Zhang et al.,
2019, Mahgoub et al., 2020]. YCSB [Cooper et al., 2010] is a widely used database benchmarking
suite that provides various workloads that simulate different real-world scenarios, making it suitable
for evaluating Redis in different configurations.

7

env_id: Redis-v0
description: to reduce execution time of the database workload
items:

- name: mean_throughput
desc: The average rate at which Redis processes the workload (in

requests/second) during the episode↪→

min: 9500
max: null
aim: maximize
rank: 0

Figure 5: Spec for Redis

env_id: CartPole-v1
description: to balance a pole on a cart so that the pole stays upright
items:

- name: normalized_episode_length
desc: The number of steps for which the pole stays upright in an

episode, normalized by the maximum episode length↪→

min: 0.85
max: 1.0
aim: maximize
rank: 0

- name: normalized_abs_delta_theta
desc: Sum of all theta deviations of the pole in an episode,

normalized by the maximum episode length↪→

min: 0.0
max: 0.03
aim: minimize
rank: 1

- name: normalized_abs_displacement
desc: Sum of all x-displacements of the cart in an episode, normalized

by the maximum episode length↪→

min: 0.0
max: 0.05
aim: minimize
rank: 2

Figure 6: Spec for CartPole

B.2 CartPole

The CartPole environment is a classical benchmark in reinforcement learning (RL), originally
introduced in [Barto et al., 1983]. It simulates a cart moving along a track with a pole attached to it.
The goal of the agent is to balance the pole by applying forces to the cart to keep the pole upright
for as long as possible. The environment is simple yet effective for testing RL algorithms due to
its continuous action space and deterministic dynamics. In this environment, the agent receives a
reward of +1 for every time step the pole remains upright, and the episode terminates when the
pole falls past a certain angle threshold or the cart moves beyond the bounds of the track. This
makes the task episodic, where the agent seeks to maximize the cumulative reward by maintaining
balance. The challenge in CartPole lies in learning the optimal control policy to maintain balance,
making it a foundational environment for testing policy-based, value-based, and hybrid RL algorithms.
Although it represents a single-objective task, it forms the basis for more complex multi-objective
environments where trade-offs between competing objectives, such as stability (by measuring the
angular displacement of the pole) and energy efficiency (by measuring the linear displacement of the
cart), are introduced.

8

C Examples of generated reward functions

This section provides examples of generated reward functions for Redis and CartPole.

def compute_reward(self) -> Tuple[float, Dict[str, float]]:
"""
Compute reward for reducing execution time of the database workload.

Reward is calculated based on the instantaneous ops per second (throughput)
and the total error replies. A higher throughput and lower error replies result
in a higher reward.
"""

Define temperature variables for transformation functions
throughput_temperature = 100.0

Calculate individual reward components
throughput_reward = self.redis_server_metrics["instantaneous_ops_per_sec"] / throughput_temperature
error_replies_reward = -self.redis_server_metrics["total_error_replies"]

Combine individual rewards into a total reward
total_reward = throughput_reward + error_replies_reward

return total_reward, {
"throughput_reward": throughput_reward,
"error_replies_reward": error_replies_reward,

}

Figure 7: Redis - Reward function

def compute_reward(self) -> Tuple[float, Dict[str, float]]:
"""
Compute reward for CartPoleEnv.

The goal is to balance a pole on a cart so that the pole stays upright.
We use a combination of rewards to encourage the agent to keep the pole upright and the cart

centered.↪→

:return: total_reward, reward_components
"""

Reward for keeping the pole upright
pole_angle_temperature = 10.0
pole_angle_reward = np.exp(-self.state[2]**2 / pole_angle_temperature) # Re-write reward component

to provide more nuanced feedback↪→

Reward for keeping the cart centered
cart_position_scale = 0.1
cart_position_reward = -cart_position_scale * abs(self.state[0]) # Re-scale value to a proper range

Reward for survival
survival_reward = 0.10 if self.state[2] < 0.2095 else 0.00 # Keep the reward component as it is

written↪→

Total reward
total_reward = pole_angle_reward + cart_position_reward + survival_reward

return total_reward, {
'pole_angle_reward': pole_angle_reward,
'cart_position_reward': cart_position_reward,
'survival_reward': survival_reward

}

Figure 8: CartPole - Reward function

9

D Details of Implementation Assets

Following are the details regarding the assets that we have used in our implementation:

Asset Version License
Gymnasium 0.29.1 MIT

Stable Baselines Jax (sbx) 0.17.0 MIT
YCSB 0.17.0 Apache-2.0
Redis 7.4.0 Redis Source Available License 2.0 (RSALv2)

10

https://github.com/Farama-Foundation/Gymnasium
https://github.com/araffin/sbx
https://github.com/brianfrankcooper/YCSB
https://github.com/redis/redis

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper claims and motivates the scope and contribution of our work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]

Justification: The paper presents preliminary results and is still a work in progress.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

11

Justification: This work is application-focused and does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The environments, specs, feasibility threshold, workloads and the solution
pipeline have been described in section 3 of the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

12

Answer: [No]
Justification: This is still a work in progress. We are working on making the evaluation even
more robust and hope to release the code post that.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details are covered in section 3 of the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results are presented either as violinplots or bar plots with standard
deviation bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

13

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: This work-in-progress paper presents preliminary results, with full resource
details to be included in the final conference submission.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This is an early-stage, work-in-progress research study.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

14

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the assets used in the primary text in Appendix D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

15

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16

	Introduction
	Methodology
	The Reward Copilot Framework

	Evaluation Setup
	Results
	Additional Method Details
	Test Domains and Environment Designs
	Redis
	CartPole

	Examples of generated reward functions
	Details of Implementation Assets

