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Abstract

Fine-tuning with Reinforcement Learning with Human Feedback (RLHF) is essen-
tial for aligning large language models (LLMs). However, RLHF often encounters
significant memory challenges. This study is the first to examine memory usage in
the RLHF context, exploring various memory management strategies and unveiling
the reasons behind excessive memory consumption. Additionally, we introduce a
simple yet effective approach that substantially reduces the memory required for
RLHF fine-tuning.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) helps align large language models (LLMs)
with human values and expectations [1, 2, 3], ensuring that the models produce more accurate,
relevant, and contextually appropriate outputs. The RLHF process includes multiple inference and
training phases, which involve a total of four models, leading to high memory consumption [4, 5, 6].
Efficient memory management techniques are necessary to enable the practical deployment of RLHF.

Improving memory efficiency during training and inference is a well-studied topic. Previous studies
have proposed different memory management policies to reduce memory consumption, such as
Zero Redundancy Optimizers (ZeRO) [7, 8], gradient checkpointing [9], and CPU offloading [10],
as discussed in §2.2. Additionally, some work focuses on reducing the memory consumption of
inference, especially for key-value caching [11, 12]. These memory management strategies are
typically combined together to optimize the memory consumption, as they are orthogonal in theory.
However, based on our experiments, some strategies actually introduce higher memory consumption,
instead of reducing it.

Therefore, it is crucial to understand the reason behind this, and how each memory management
strategy may inadvertently affect the overall memory consumption. This knowledge will enable the
development of optimized memory management strategies and impact the cost of computational
resources, making the RLHF fine-tuning of LLMs more accessible and sustainable.

For this purpose, this work provides the first study on memory usage in the RLHF scenario. During
this study, we focus on two open-source RLHF frameworks, including DeepSpeed-Chat [13] and
ColossalChat [14]. Our study also includes two types of LLM models, aiming to answer the following
technical questions:

• R1: What causes high memory consumption during RLHF?
• R2: How effective are different memory management strategies?
• R3: How can we effectively reduce memory consumption in RLHF?
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Overall, this study explains why enabling certain strategies may introduce counter-intuitive effects
in memory reduction, and further proposes a simple yet effective method that helps reduce memory
consumption in RLHF training. The proposed approach minimizes memory consumption without
requiring substantial code changes or redesigns, thus offering an efficient solution with minimal
effort.

2 Background

2.1 RLHF Training

RLHF [1] is a widely used technique to enhance LLMs by incorporating human preferences into the
training process. It involves three stages, each requiring fine-tuning of the LLM: (1) supervised fine-
tuning (SFT) on an instruction-following dataset; (2) training a reward model on human preference
data; and (3) fine-tuning via proximal policy optimization (PPO) [15]. Our work focuses on the
third stage, which is resource-intensive due to the need to manage several large models: the SFT
reference model to prevent reward divergence, the reward model for calculating sequence returns, the
actor model (final RLHF-aligned LLM) initialized from the reference model, and the critic model
initialized from the reward model to estimate returns. In this stage, the actor generates responses
to prompts, which are then evaluated by multiple inferences (actor, reference, critic, and reward) to
produce experience data. Finally, the actor model is trained to maximize rewards while minimizing
policy deviation, and the critic model is trained to ensure alignment with human preferences.

2.2 Memory Management in Training

Various strategies can reduce memory consumption during model training. ZeRO [7, 8] minimizes
data redundancy in distributed training by partitioning optimizer states, gradients, and model pa-
rameters. CPU Offloading [10] moves some data to CPU memory, thereby reducing GPU memory
consumption. Gradient checkpointing [9] trades computation for reduced memory usage by storing
only partial activations and recomputing the rest. Existing RLHF training systems often rely on
open-source LLM training frameworks that incorporate these memory optimization techniques. For
instance, ColossalChat [14] uses Colossalai [16], while DeepSpeed-Chat [13], trlX [17], APP [18],
and LLaMA-Factory [19] use DeepSpeed [20].

These training frameworks are typically built on top of PyTorch, relying on its CUDA caching
allocator for managing memory usage. Pytorch allocator exposes two parameters that help to
understand memory usage: reserved memory refers to the total amount of GPU memory that has
been reserved by the PyTorch CUDA caching allocator from the CUDA driver, and allocated memory
refers to the amount of GPU memory that is currently being used by active tensors.

3 Detailed Studies

This section develops the experiments to answer the three research questions in §1, based on two
open-source RLHF projects. In the remainder of this section, the size of fragmentation is equal to the
difference between reserved memory and allocated memory when the PyTorch allocator attempts to
allocate more memory from the CUDA driver.

Hardware Platform: Our experiments was performed on a machine with 2 Intel(R) Xeon(R) Silver
4214R CPUs and 376GB DRAM, and 4 NVIDIA GeForce RTX 3090 GPUs, each with 24GB of
HBM memory.

Workload and Setting: For DeepSpeed-Chat, we evaluated OPT [21], where the Actor and Reference
model are OPT-1.3b, and the Critic and Reward are OPT-350m model. For ColossalChat, we tested
OPT with the same size. For GPT-2 [22], the Actor and Reference are GPT2-xl, and the Critic and
Reward are GPT2-medium.

For each framework, we use its default input data, and we set the LoRA [23] dimension to 128. We
set the batch size to 2 for DeepSpeed-Chat, and 32 for ColossalChat. ColossalChat offloads the
inference models to the CPU during actor and critic training.
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3.1 What Causes High Memory Consumption during RLHF?

We ran DeepSpeed-Chat with ZeRO, CPU offloading, and gradient checkpointing enabled – hereafter
referred to as memory management strategies – and profiled the memory usage as shown in Figure 1.
In this figure, “reserved memory w/o fragmentation” is calculated by subtracting the size of fragmen-
tation from the reserved memory (the yellow line). The difference between the peak reserved memory
and “reserved memory w/o fragmentation” is referred to as memory fragmentation overhead.
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Figure 1: Memory usage (GB) of DeepSpeed-Chat running OPT with multiple memory management
strategies enabled. The red cross marks the peak of reserved memory, while the yellow cross and
dotted yellow line mark the theoretical peak of reserved memory after subtracting the size of memory
fragmentation.

In this experiment, the peak memory usage appears in the training phase where the reserved memory
size is much larger than the allocated memory size. We further found that the gap between the
reserved and allocated memory is due to external memory fragmentation (hereafter referred to as
fragmentation). In this example, the memory fragmentation overhead is 6.2 GB, increasing the
memory consumption by 46%.

To determine whether significant fragmentation accumulates from the prior tasks, we compared the
memory consumption of the three scenarios: (1) running both inferences and training; (2) training the
actor and critic models with pre-collected data; (3) training only the actor model with pre-collected
data. When only performing the training phases, we observed smaller fragmentation and reserved
memory. Therefore, most fragmentation is accumulated from inferences to the training. In §3.3, we
further confirmed that the inferences generate the most fragmentation, which introduces most of the
memory consumption to RLHF.

Insight: RLHF introduces high memory consumption because of memory fragmentation. The
memory consumption reaches its peak during the training, but mostly due to a large size of
memory fragmentation accumulated from inferences.

3.2 How Effective are Different Memory Management Strategies?

We profiled the memory usage of DeepSpeed-Chat and ColossalChat with different strategies enabled,
as shown in Table 1. Note that ColossalChat does not support ZeRO-1. In addition, ColossalChat
fails in the gradient synchronization when all strategies are enabled, so we excluded those cases. For
each of the strategies, we have the following observations:

ZeRO-1: Based on our investigation, ZeRO-1 does not increase the memory fragmentation overhead,
and it stably reduces memory consumption (the reserved memory).

ZeRO-2: ZeRO-2 of DeepSpeed-Chat can slightly increase the fragmentation. However, it still
reduces memory consumption.

ZeRO-3: ZeRO-3 increases the memory fragmentation overhead. In DeepSpeed-Chat, it causes the
memory consumption even greater than those with ZeRO-1 and ZeRO-2, mostly due to memory
fragmentation.

CPU Offloading: Based on our observation, CPU offloading can affect the size of fragmentation.
However, it can effectively reduce the memory consumption.

Gradient Checkpointing: It may slightly increase the memory fragmentation overhead, but it is still
effective in reducing memory consumption, except for ColossalChat with GPT-2. We further figured
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Table 1: Memory usage under different memory management strategies. “Reserved” shows the peak
of reserved memory size, “Frag.” column shows the size of memory fragmentation, and “Allocated”
column lists the peak size of allocated memory. We highlighted the strategies (with red color) that
increase the memory fragmentation overhead, and the cases (with bold format) where empty_cache()
is effective in reducing the fragmentation.

Framework Model Strategy Original Allocated Using empty_cache()
Reserved Frag. Reserved Frag.

DeepSpeed-Chat OPT

None 18.8 0.2 18.2 19.4 <0.1
ZeRO-1 15.6 0.1 14.4 15.9 0.1
ZeRO-2 14.5 0.6 12.8 14.3 <0.1
ZeRO-3 17.3 3.7 12.0 13.7 0.3
ZeRO-3 + CPU Offloading 15.4 4.0 9.8 11.7 0.3
Gradient Checkpointing 15.4 0.6 14.8 15.4 0.1
All Enabled 11.8 6.2 5.4 5.9 0.1

ColossalChat

OPT

None 17.5 0.2 17.0 17.8 0.4
ZeRO-3 16.5 0.5 15.6 16.4 0.4
ZeRO-3 + CPU Offloading 13.1 0.4 12.3 13.1 0.2
Gradient Checkpointng 14.8 0.7 12.1 12.5 0.1

GPT-2

None 22.9 6.9 14.0 15.0 0.1
ZeRO-3 22.1 7.6 13.2 16.6 0.2
ZeRO-3 + CPU Offloading 15.0 2.6 10.3 11.5 0.1
Gradient Checkpointing 22.9 6.9 14.0 15.0 0.1
All Enabled 15.0 2.6 10.3 11.5 0.1

out that for GPT-2, the memory consumption reaches its peak during the inference phases, where
gradient checkpointing has no effect.

Insights: Not all memory management strategies can reduce memory consumption: ZeRO-3
may increase the fragmentation and memory consumption; ZeRO-2 and CPU offloading may
increase the fragmentation, but they still effectively reduce memory consumption; gradient
checkpointing only reduces the memory consumption when peaks occur during training phases,
and ZeRO-1 consistently lowers memory consumption.

3.3 How Can We Effectively Reduce Memory Consumption in RLHF?

We find that the empty_cache() API exposed by the PyTorch allocator can help significantly alleviate
memory fragmentation. Invocation of the API will release all cached memory blocks back to the
GPU [24]. To reduce memory consumption, we propose to insert empty_cache() after each inference
and training phase to release cached memory. Our results show that the proposed approach effectively
reduces memory fragmentation, as shown in the bold part of Table 1. For these cases, it reduces the
memory consumption by 25% on average. Additionally, the approach only increases the end-to-end
time overhead by 2% on average.

We compared the memory consumption of invoking empty_cache() at different phases: (1) after
each inference and training phase (2) only after each inference phase (3) only after the training phases.
Based on our evaluation, invoking empty_cache() after inferences is almost as effective as invoking
upon each inference and training phase, while invoking only after the training phases is not very
effective. The observation echoes our previous insight in §3.1 that the inference phase introduces
most of the memory fragmentation and has the largest impact on RLHF’s memory consumption.

Insight: Invoking empty_cache() after each inference phase can significantly reduce the
memory fragmentation overhead and memory consumption, with only increasing 2% end-to-end
time on average.

4 Conclusion

RLHF is an important stage for LLM alignment, but it often has high memory consumption. This
paper provides the first study on RLHF memory usage. We identified the cause of high memory
consumption, and investigated the effectiveness of different memory management strategies in the
RLHF scenario. We also found a simple yet effective approach to reduce memory consumption by
using the empty_cache() API, which can reduce 25% of the memory consumption with only 2%
end-to-end time overhead on average.
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A Appendix: PyTorch Allocator and empty_cache()

The PyTorch memory allocator manages a pool of free memory blocks to minimize the overhead
associated with frequent allocations and deallocations directly from the GPU. When memory is
requested, the allocator first checks this pool for suitable blocks, invoking the costly cudaMalloc()
operation only when necessary. Upon deallocation, memory blocks are not immediately returned to
the GPU but are instead cached for future reuse. In RLHF training, different tasks often have different
memory allocation patterns with varying object sizes, leaving smaller memory blocks in the pool that
are difficult to reuse, leading to memory fragmentation. When memory management strategies are
used, the difference in allocation sizes can become even more noticeable, making the fragmentation
worse.

The PyTorch API function, empty_cache(), releases all unused cached blocks in the pool, reducing
memory fragmentation. The function empty_cache() is not commonly used in traditional training
because it has a limited impact on memory savings and significant time overhead. However, it is
effective in RLHF training, likely because empty_cache() can release most of the cached blocks
from the previous task, preventing fragmentation. Additionally, since the last task has already finished,
these memory blocks are no longer being used by any stream, allowing them to be released without
waiting.

B Appendix: Other Implementation Details

We implemented a profiler that collects the sizes of reserved and allocated memory by calling the
API of PyTorch’s allocator. External memory fragmentation is computed at each cudaMalloc()
invocation. It represents the difference between reserved and allocated memory when the allocator
cannot satisfy the requested size due to non-contiguous freed objects.

For ColossalChat, we observed that the memory consumption of generation() was exception-
ally high in the original implementation. We replaced its implementation of the function with
HuggingFace’s to decrease memory consumption.

C Appendix: Additional Experiment Results

Table 2: Memory usage with and without ZeRO-3 on a node with 4 A100 GPUs. “Reserved” shows
the peak of reserved memory size, “Frag.” column shows the size of memory fragmentation, and
“Allocated” column lists the peak size of allocated memory. We highlighted the strategies (with red
color) that increase the memory fragmentation overhead, and the cases (with bold format) where
empty_cache() is effective in reducing the fragmentation.

Original Using empty_cache()Framework Model Strategy Reserved Frag. Allocated Reserved Frag.
None 46.4 2.4 43.5 45.5 0.3OPT-1.3b ZeRO-3 46.4 2.9 43.2 45.0 0.3
None 53.4 9.2 31.4 44.3 0.1OPT-6.7b ZeRO-3 55.3 20.6 25.6 50.3 0.8
None 56.2 8.8 39.2 44.9 0.2

ColossalChat

Llama-2-7b ZeRO-3 60.5 13.4 32.3 54.5 1.7

We also tested more examples on machines with A100s, as shown in Table 2. We found that the
observations discussed in the main text also hold true across different platforms and models.

D Appendix: Limitations

Our studies include just two open-sourced RLHF frameworks and two models. Our findings might
vary when applied to other frameworks or models. Due to page constraints, we did not list the
underlying reasons behind the varying effectiveness of each strategy. Additionally, we did not cover
all existing memory management strategies, such as PagedAttention [25].
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