Deep Learning Acceleration via Low Precision Computing

Zhaoxia (Summer) Deng Al System Co-design @ facebook

Team Introduction

- Al System Co-design team mission:
 - Al application-driven sw & hw co-design through
 - High performance numerical and architectural optimizations
 - HW performance modeling and simulations
- Expertise
 - HPC and parallel algorithms
 - Computer architecture
 - Performance optimization and modeling
 - Numerical linear algebra, ML, and graph analytics

Agenda

- Facebook AI workload characteristics
- Low precision computing
 - Reduced precision floating point optimization
 - Fixed point quantization
- Al system co-design for low precision computing
 - Model co-design
 - Hardware co-design

Agenda

- Facebook AI workload characteristics
- Low precision computing
 - Reduced precision floating point optimization
 - Fixed point quantization
- Al system co-design for low precision computing
 - Model co-design
 - Hardware co-design

Al Growth and Its Drivers

Big and better data

Better algorithms

More compute

Al Driven Services at Facebook

Figure credit: Misha Smelyanski

Al Execution Flow

Al Inference in Facebook Datacenters

Language translation Video understanding Image recognition

Workload characteristics

Category	Model Types	Model Size (# params)	Max. Live Activations	Op. Intensity (w.r.t. weights)	Op. Intensity (w.r.t. act & weights)
Recommendation	FCs	1-10M	> 10K	20-200	20-200
	Embeddings	>10 Billion	> 10K	1-2	1-2
Computer Vision	ResNeXt101-32x4-48	43-829M	2-29M	avg. 380 Min. 100	Avg. 188 Min. 28
	Faster-RCNN (with ShuffleNet)	6M	13M	Avg. 3.5K Min. 2.5K	Avg. 145 Min. 4
	ResNeXt3D-101	21M	58M	Avg. 22K Min. 2K	Avg. 172 Min. 6
Language	seq2seq	100M-1B	>100K	2-20	2-20

Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications <u>https://arxiv.org/abs/1811.09886</u>

Efficient Al inference challenges

- Capacity crunch
- Realtime model serving efficiency
- Scale to billions of users

Y3 Q2

Agenda

- Facebook AI workload characteristics
- Low precision computing
 - Reduced precision floating point optimization
 - Fixed point quantization
- Al system co-design for low precision computing
 - Model co-design
 - Hardware co-design

Low-precision computing

- Default precision: fp32
- Reduced-precision floating point • Fp16, bf16, fp8, etc.
- Fixed point quantization
 - Int8, int4, etc.
- Others
 - Posits (Gustafson 2016)
 - Logarithmic, k-means, etc.

Example of reduced precision representations

fp16

sign exponent (5 bits) fraction (10 bits)

bf16

Performance modeling

Roofline: An Insightful Visual Performance Model for Floatingpoint Programs and Multicore Architecture. Williams et al.

Given FC (m, n, k), assume $T = max(cpu_t, mem_t)$

- $cpu_t = 2 * m * n * k / C$
- mem_t = S * (m * n + m * k + n * k) / B

System performance is:

- memory bandwidth bound when cpu_t <= mem_t;
- Otherwise, compute bound.

Compute bound scenarios:

• CV

Memory bound scenarios:

Language translation, recommendation

Reduced precision optimizations

- Fp16:
 - Good programmability and negligible accuracy loss
- Use cases:
 - Prepack the weights in NNs into fp16
 - Convert dense and sparse features to fp16 for end-to-end performance optimizations

Recommendation systems

Figure credit: Maxim Naumov

Int8 quantization

- Dequantization: $x = scale \cdot (x_q offset)$

• Quantization: $x_a = clip(round(x/scale) + offset, -128, 127)$

Challenges

- Accuracy requirements
 - 0.02% for recommendation systems
 - 0.5% for computer vision models
- Performance optimizations

Accuracy improving techniques (1)

- Symmetric vs. Asymmetric

 - slight loss of accuracy if using int8 for both weights and activations
- Unsigned vs. Signed
- Including 0 or not
- Channel-wise quantization
 - Assign scale and offset for each channel

preserve sparsity, no nasty handling of offsets during matmul

Accuracy improving techniques (2)

- L2 error minimization vs. Min-max
 - values while allowing relatively large errors for outliers.
 - Minimize the quantization errors for the more common • Requires the activation histogram profiling offline.
- Outlier-aware quantization

FBGEMM

- Facebook high performance linear algebra library
 - Optimized on-CPU performance for low precision calculations
 - Supports accuracy-loss-minimizing techniques
 - Dynamically generates matrixshape specific vectorized code

FBGEMM performance for compute bound scenarios

https://code.fb.com/ml-applications/fbgemm/

M_N_K

Int8 quantization for CV models

- OCR text recognition using Rosetta
 - 2x speedups using int8 and int32 acc.
 - 2x speedups using int8 and int16 acc.
 - Outlier-aware quantization
 - Model adjustments
 - Int8 quantization workflow
 - optimization, quantization space exploration

Rosetta: Large scale system for text detection and recognition in images Fedor Borisyuk et al.

Activation histogram profiling, graph transformation, kernel

Agenda

- Facebook AI workload characteristics
- Low precision computing
 - Reduced precision floating point optimization
 - Fixed point quantization
- Al system co-design for low precision computing
 - Model co-design
 - Hardware co-design

Model co-design

- Int8 quantization on Rosetta
 - + 0.5% accuracy in both fp32 and int8 models
- Int8 quantization on recommendation systems • Wider FC layers to compensate for accuracy loss

ShuffleNet https://arxiv.org/pdf/1707.01083.pdf

Hardware co-design

 Low-precision computing can achieve 2x ~ 4x performance improvements on today's hardware

 How to meet the fast growing Al demand for tomorrow?

Al Inference Hardware

Technology, energy and Dennard scaling

Al Inference Hardware

- Facebook designs its own hardware since 2010
- All designs released through open compute!
- ASIC
- Done via co-design with FB workloads in mind
 - Simulate performance with production models
 - Advise the quantization support from hardware

• Facebook is partnering with HW vendors to build inference

Thanks!

- Q&A