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Team Introduction

* Al System Co-design team mission:
* Al application-driven sw & hw co-design through

* High performance numerical and architectural optimizations

* HW performance modeling and simulations

* Expertise
* HPC and parallel algorithms
* Computer architecture
* Performance optimization and modeling
* Numerical linear algebra, ML, and graph analytics



Agenda

* Facebook Al workload characteristics
* Low precision computing
* Reduced precision floating point optimization
* Fixed point quantization
* Al system co-design for low precision computing

* Model co-design
* Hardware co-design
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Al Growth and Its Drivers
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Al Driven Services at Facebook
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Al Execution Flow
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Al Inference in Facebook Datacenters

Language translation

Video understanding

Image recognition

Recommendation systems (e.g. News Feed, Ads




Workload characteristics

Model Types Model Size (# Max. Live Op. Intensity Op. Intensity
params) Activations (w.r.t. weights) (w.r.t. act &
weights)
_ FCs 1-10M > 10K 20-200 20-200
Recommendation , -
Embeddings >10 Billion > 10K 1-2 1-2
] ] ] ] avg. 380 Avg. 188
ResNeXt101-32x4-48 43-829M 2-29M Min. 100 Min. 28
- Faster-RCNN (with Avg. 3.5K Avg. 145
V M 13M
~omputer Vision ShuffleNet) ° > Min. 2.5K Min. 4
Avg. 22K Avg. 172
ResNeXt3D-101 2TM 53M Min. 2K Min. &
Language seqgZseq 100M-1B >100K 2-20 2-20

Deep Learning Inference in Facebook Data Centers:
Characterization, Performance Optimizations and Hardware Implications
https://arxiv.org/abs/1811.09886



https://arxiv.org/abs/1811.09886

Efficient Al inference challenges

* Capacity crunch
* Realtime model serving efficiency
* Scale to billions of users

Accuracy vs Capacity
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Low-precision computing

* Default precision: fp32

* Reduced-precision floating point

* Fp16, bf16, fp8, etc.

* Fixed point quantization
* Int8, Int4, etc.

* Others
* Posits (Gustafson 2016)

* Logarithmic, k-means, etc.
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Performance modeling
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Roofline: An Insightful Visual Performance Model for Floating-
point Programs and Multicore Architecture. Williams et al.
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Given FC (m, n, k), assume T = max(cpu_t, mem_t)
* cpu_t=2*m*n*k/C
* mem_t=S*(M*n+m*k+n*k)/B

System performance is:
* memory bandwidth bound when cpu_t <= mem_t;
* Otherwise, compute bound.

Compute bound scenarios:

* CV

Memory bound scenarios:

* Language translation, recommendation



Reduced precision optimizations

o Fp’l 6: Recommendation systems

* Good programmability and negligible A
|

accuracy loss
e Use cases: Q
A A A

* Prepack the weights in NNs into fp16

* Convert dense and sparse features - -

to fp16 for end-to-end performance

O ptl M |Zat | OnNsS dense features sparse features

Figure credit: Maxim Naumov
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Int8 quantization

* Dequantization: x = scale*(x, — offset)
* Quantization: x, = clip(round(x/scale) + offset, -126, 127)

T

— \

scale (-128 - offset) 0 scale (127 - offset)

fp32

INt8

-128 offset 127



Challenges

* Accuracy requirements
* 0.02% for recommendation systems
* 0.5% tor computer vision models

* Performance optimizations



Accuracy improving techniques (1)

* Symmetric vs. Asymmetric
* preserve sparsity, no nasty handling of offsets during matmul
* slight loss of accuracy it using int8 for both weights and
activations
* Unsigned vs. Signed
* Including O or not
* Channel-wise quantization
*Assign scale and offset for each channel



Accuracy improving techniques (2)

* L2 error minimization vs. Min-max
* Minimize the quantization errors for the more common
values while allowing relatively large errors for outliers.
* Requires the activation histogram profiling offline.

* Outlier-aware quantization



FBGEMM

* Facebook high performance

FBGEMM performance for compute bound scenarios

inear algebra library
* Optimized on-CPU performance
for low precision calculations

* Supports accuracy-loss-minimizing
techniques

* Dynamically generates matrix-
https://code.fb.com/ml-applications/fbgemm/

shape specific vectorized code


https://code.fb.com/ml-applications/fbgemm/

Int8 quantization for CV models

* OCR text recognition using Rosetta

* 2x speedups using int8 and int32 acc.
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* 2x speedups using int8 and int16 acc.
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* Qutlier-aware quantization

Rosetta: Large scale system for text

e Mode] adjustments detection and recognition in images

Fedor Borisyuk et al.

* Int8 quantization workflow

* Activation histogram profiling, graph transformation, kernel
optimization, quantization space exploration
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Model co-design

* Int8 quantization on Rosetta

* + 0.5% accuracy in both fp32 and /\
. v BN ReLU
iNnt8 models

\/ |
* Int8 quantization on avwen | S
recommendation systems \

* Wider FC layers to compensate T

for accuracy loss .

https://arxiv.org/pdf/1707.01083.pdf



https://arxiv.org/pdf/1707.01083.pdf

Hardware co-design
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Al Inference Hardware

Technology, energy and Dennard scaling Inference ASIC Hardware
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https://web.stanford.edu/~hennessy/Future%20of%20Computing.pdf

Al Inference Hardware

* Facebook designs its own hardware since 2010

* All designs released through open compute!

* Facebook is partnering with HW vendors to build inference
ASIC

* Done via co-design with FB workloads in mind
* Simulate performance with production models
* Advise the quantization support from hardware



Thanks!

* Q&A



