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Team Introduction
• AI System Co-design team mission:

• AI application-driven sw & hw co-design through 
• High performance numerical and architectural optimizations
• HW performance modeling and simulations

• Expertise
• HPC and parallel algorithms
• Computer architecture
• Performance optimization and modeling
• Numerical linear algebra, ML, and graph analytics



Agenda
• Facebook AI workload characteristics
• Low precision computing
• Reduced precision floating point optimization
• Fixed point quantization

• AI system co-design for low precision computing
• Model co-design
• Hardware co-design



Agenda
• Facebook AI workload characteristics
• Low precision computing
• Reduced precision floating point optimization
• Fixed point quantization

• AI system co-design for low precision computing
• Model co-design
• Hardware co-design



AI Growth and Its Drivers

Big and better data

Better algorithms

More compute



AI Driven Services at Facebook

Figure credit: Misha Smelyanski
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AI Inference in Facebook Datacenters



Workload characteristics

Category Model Types Model Size (# 
params)

Max. Live 
Activations

Op. Intensity 
(w.r.t. weights)

Op. Intensity 
(w.r.t. act & 

weights)

Recommendation
FCs 1-10M > 10K 20-200 20-200

Embeddings >10 Billion > 10K 1-2 1-2

Computer Vision

ResNeXt101-32x4-48 43-829M 2-29M avg. 380
Min. 100

Avg. 188
Min. 28

Faster-RCNN (with 
ShuffleNet) 6M 13M Avg. 3.5K

Min. 2.5K
Avg. 145

Min. 4

ResNeXt3D-101 21M 58M Avg. 22K
Min. 2K

Avg. 172
Min. 6

Language seq2seq 100M-1B >100K 2-20 2-20

Deep Learning Inference in Facebook Data Centers: 
Characterization, Performance Optimizations and Hardware Implications

https://arxiv.org/abs/1811.09886
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Efficient AI inference challenges
• Capacity crunch
• Realtime model serving efficiency
• Scale to billions of users

Deep Learning Inference in Data Centers: Characterization, Performance
Optimizations, and Hardware Implications

ASPLOS Submission #385– Confidential Draft – Do Not Distribute!

Abstract
Machine learning (ML), particularly deep learning (DL), is

used in many social network services. Despite recent prolif-
eration of DL accelerators, to provide flexibility, availability
and low latency, many inference workloads are run evaluated
on CPU servers in the datacenter. As DL models grow in
complexity, they take more time to evaluate and thus result in
higher compute and energy demands in the datacenter. This
paper provides detailed characterizations of DL models used
in social network services to illustrate the needs for better co-
design of DL algorithms, numerics, and hardware. We present
computational characteristics of our models, describe high-
performance optimizations targeting existing systems, point
out limitations of these systems, and suggest implications for
future general-purpose/accelerated inference hardware.

1. Introduction
Machine learning (ML) is used in many social network ser-
vices. For instance, deep learning (DL) can be used to enable
better personalization as well as integrity and security of the
system, for example by detecting and preventing the spread of
violent content and hate speech. As the quality of DL models
improves, their use will increase, particularly as people engage
with richer content and multi-language environments.

The high quality visual, speech, and language DL models
must scale to billions of users in social networks [25]. At the
same time, the power consumption in data centers used to run
these models has been rapidly increasing. The collective power
consumption of data centers around the world would be ranked
4th behind only China, US and the EU [4]. A significant frac-
tion of the future increase in data center power consumption
is expected to come from DL, as Figure 1 shows roughly 2⇥
per year increase. The power increase is due to the expanding
range of DL applications and the steady improvement in the
quality of DL models, which often results in the corresponding
increase in compute and memory requirements [2].

In order to tackle this trend, a lot of research has been
done on optimizing computing platforms for DL [1, 18, 25,
34, 47, 48, 58, 59]. One challenge is that DL applications
are fast moving targets for computing platform optimization.
AlexNet [39], which was presented only a few years ago, is
no longer representative of the computation characteristics of
today’s computer vision (CV) DL models used in practice.
This can be a huge risk when designing accelerator hardware
considering its longer time-to-market compared to the appli-
cation software. The rate of change in DL models is so fast

Figure 1: Server capacity for DL inference in data centers.

that hardware optimized for old models can easily become in-
efficient for new models. Even though we had direct access to
the DL models and our optimizations were mostly in software
running on general purpose processors, it has been difficult to
keep up with the rapid innovation in DL. We can only imag-
ine the difficulty hardware designers must face without direct
access to DL models in real applications. Our characterization
suggests the following needs from new DL hardware designs:
1. Powerful vector engines in addition to matrix engines
2. Half-precision floating-point computation when needed
3. Large on-chip memory for small-batch DL inference

Increasing model complexity and lowered latency require-
ments drive the need for powerful vector engines in addition to
matrix engines. As noted earlier, the success of a DL model is
often governed by its accuracy, driving a need to resort to half-
precision floating-point computation when integer operations
are insufficient. To support low-latency with small-batch-size
services and to support recent models with bigger weight and
activation tensors, a large on-chip memory is needed to ensure
we are not bound by off-chip memory bandwidth.

This paper presents the characteristics of DL models impor-
tant to us now (as well as ones we believe will be important in
the future), our experience in optimizing DL applications for
current computing platforms, limitations of the current com-
puting platforms found from our optimization experiences,
and implications for future processor designs. In particular,
we found a gap in characteristics between the models com-
monly studied by the systems community and the models
running in our data centers, which could easily impact the
efficiency of DL platforms being actively designed. Compared
to other studies on DL workloads in data centers [25, 34],
this paper focuses on co-design between algorithms, numer-
ics, and processor architecture based on detailed application
characterization and optimization experience.

The rest of this paper is organized as follows: Section 2
describes our representative DL models, relation to our so-

Increase of server capacity by Xiaodong Wang

Accuracy vs Capacity
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• Facebook AI workload characteristics
• Low precision computing
• Reduced precision floating point optimization
• Fixed point quantization
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Low-precision computing
• Default precision: fp32
• Reduced-precision floating point
• Fp16, bf16, fp8, etc.

• Fixed point quantization
• Int8, int4, etc.

• Others
• Posits (Gustafson 2016)
• Logarithmic, k-means, etc.

fp32

bf16

fp16

sign exponent (5 bits) fraction (10 bits)

Example of reduced precision representations
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We can plot a horizontal line showing peak floating-point 

performance of the computer. Obviously, the actual floating-point 

performance of a floating-point kernel can be no higher than the 

horizontal line, since that is a hardware limit. 

How could we plot the peak memory performance? Since X-axis 

is GFlops per byte and the Y-axis is GFlops per second, bytes per 

second—which equals (GFlops/second)/(GFlops/byte)—is just a 

line at a 45-degree angle in this figure. Hence, we can plot a 

second line that gives the maximum floating-point performance 

that the memory system of that computer can support for a given 

operational intensity. This formula drives the two performance 

limits in the graph in Figure 1a: 

Attainable GFlops/sec = Min(Peak Floating Point Performance, 

Peak Memory Bandwidth x Operational Intensity) 

These two lines intersect at the point of peak computational 

performance and peak memory bandwidth. Note that these limits 

are created once per multicore computer, not once per kernel. 

For a given kernel, we can find a point on the X-axis based on its 

operational intensity. If we draw a (pink dashed) vertical line 

through that point, the performance of the kernel on that computer 

must lie somewhere along that line.  

The horizontal and diagonal lines give this bound model its name. 

The Roofline sets an upper bound on performance of a kernel 

depending on its operational intensity. If we think of operational 

intensity as a column that hits the roof, either it hits the flat part of 

the roof, which means performance is compute bound, or it hits 

the slanted part of the roof, which means performance is 

ultimately memory bound. In Figure 1a, a kernel with operational 

intensity 2 is compute bound and a kernel with operational 

intensity 1 is memory bound. Given a Roofline, you can use it 

repeatedly on different kernels, since the Roofline doesn’t vary. 

Note that the ridge point, where the diagonal and horizontal roofs 

meet, offers an insight into the overall performance of the 

computer. The x-coordinate of the ridge point is the minimum 

operational intensity required to achieve maximum performance. 

If the ridge point is far to the right, then only kernels with very 

high operational intensity can achieve the maximum performance 

of that computer. If it is far to the left, then almost any kernel can 

potentially hit the maximum performance. As we shall see 

(Section 6.3.5), the ridge point suggests the level of difficulty for 

programmers and compiler writers to achieve peak performance.  

To illustrate, let’s compare the Opteron X2 with two cores in 

Figure 1a to its successor, the Opteron X4 with four cores. To 

simplify board design, they share the same socket. Hence, they 

have the same DRAM channels and can thus have the same peak 

memory bandwidth, although the prefetching is better in the X4. 

In addition to doubling the number of cores, the X4 also has twice 

the peak floating-point performance per core: X4 cores can issue 

two floating-point SSE2 instructions per clock cycle while X2 

cores can issue two every other clock. As the clock rate is slightly 

faster—2.2 GHz for X2 versus 2.3 GHz for X4—the X4 has 

slightly more than four times the peak floating-point performance 

of the X2 with the same memory bandwidth.  

Figure 1b compares the Roofline models for both systems. As 

expected, the ridge point shifts right from 1.0 in the Opteron X2 to 

4.4 in the Opteron X4. Hence, to see a performance gain in the 

X4, kernels need an operational intensity higher than 1.  

 

Figure 1. Roofline Model for (a) AMD Opteron X2 on left  

and (b) Opteron X2 vs. Opteron X4 on right. 

4. ADDING CEILINGS TO THE MODEL 
The Roofline model gives an upper bound to performance. 

Suppose your program is performing far below its Roofline. What 

optimizations should you perform, and in what order? Another 

advantage of bound and bottleneck analysis is [20]  

“a number of alternatives can be treated together, with a single 

bounding analysis providing useful information about them all.”  

We leverage this insight to add multiple ceilings to the Roofline 

model to guide which optimizations to perform, which are similar 

to the guidelines that loop balance gives the compiler. We can 

think of each of these optimizations as a “performance ceiling” 

below the appropriate Roofline, meaning that you cannot break 

through a ceiling without performing the associated optimization. 

For example, to reduce computational bottlenecks on the Opteron 

X2, two optimizations can help almost any kernel:  

1. Improve instruction level parallelism (ILP) and apply SIMD. 

For superscalar architectures, the highest performance comes 

when fetching, executing, and committing the maximum 

number of instructions per clock cycle. The goal here is to 

improve the code from the compiler to increase ILP. The 

highest performance comes from completely covering the 

functional unit latency. One way is by unrolling loops. For 

the x86-based architectures, another way is using floating-

point SIMD instructions whenever possible, since an SIMD 

instruction operates on pairs of adjacent operands. 

2. Balance floating-point operation mix. The best performance 

requires that a significant fraction of the instruction mix be 

floating-point operations (see Section 7). Peak floating-point 

performance typically also requires an equal number of 

simultaneous floating-point additions and multiplications, 

since many computers have multiply-add instructions or 

because they have an equal number of adders and multipliers.  

 To reduce memory bottlenecks, three optimizations can help: 

3. Restructure loops for unit stride accesses. Optimizing for 

unit stride memory accesses engages hardware prefetching, 

which significantly increases memory bandwidth.  

4. Ensure memory affinity. Most microprocessors today include 

a memory controller on the same chip with the processors. If 

Roofline: An Insightful Visual Performance Model for Floating-
point Programs and Multicore Architecture. Williams et al. 

Given FC (m, n, k), assume T = max(cpu_t, mem_t)
• cpu_t = 2 * m * n * k / C
• mem_t = S * (m * n + m * k + n * k) / B

System performance is:
• memory bandwidth bound when cpu_t <= mem_t;
• Otherwise, compute bound.

Compute bound scenarios: 
• CV
Memory bound scenarios: 
• Language translation, recommendation



Reduced precision optimizations
• Fp16:
• Good programmability and negligible 

accuracy loss
• Use cases: 
• Prepack the weights in NNs into fp16
• Convert dense and sparse features 

to fp16 for end-to-end performance 
optimizations

cial network services, and detailed computational characteris-
tics. Section 3 presents our experience of optimizing the DL
workloads for current processors, specifically x86 Intel CPUs,
where most of our inference jobs are running currently. Sec-
tion 4 discusses implications on DL hardware designs based
on our workload characterization and optimization experience.
Lastly, we provide an overview of related work in Section 5
and conclude with Section 6.

2. Characterization of DL Inference
This section highlights characteristics of DL inference work-
loads that are of interest in our data centers. Section 2.1
describes DL models used in our social network services and
discusses trends observed in their evolution over time. Sec-
tion 2.2 presents detailed characteristics, focusing on aspects
related to processor architecture design, and Section 2.3 goes
into more details of their common computational kernels.

2.1. Representative Models

We divide inference workloads into three categories. The
first provides personalized feed, ranking or recommendations,
based on previous user interactions. The second and third are
used for content understanding, visual and natural language
content, respectively. The latter infer information used for
powering recommendations, integrity and security such as
detecting objectionable content. They can also be used for
dedicated services like translation.
2.1.1. Ranking and Recommendation
Recommendation systems are one of the most common DL
workloads in data centers with many applications like ads,
feed, and search. Recommendation is usually formulated as an
event-probability prediction problem, where a model predicts
the probability of one or multiple events at the same time. The
items associated with the most likely events are ranked higher
and shown to the user.

For example, let X be a discrete random variable with pos-
sible values {x1, ...,xn} with discrete probability distribution
p. For a single event, the probability can be measured using
the cross-entropy loss, with respect to a desired distribution q,
as H(p,q) =�Ân

k=1 pk · logqk. An ML model using a similar
loss for predicting clicks has been published before [28].

Without going into a comprehensive scientific literature
review, we point out that over time the ML models and recom-
mendation systems have evolved to incorporate neural net-
works (NNs). The latter has progressed from matrix and
tensor-based factorizations [19, 36] to autoencoder and neural
collaborative filtering [27, 40, 56]. Further advances led to
the development of more complex models, such as wide and
deep as well as deep cross neural networks, which have been
successfully applied in practice [14, 26, 68, 74].

These models usually use a combination of signals from
dense and sparse features. The former are represented as a
vector of real values, while the latter are often represented as
indices of an one-hot encoded vector in a high-dimensional

Figure 2: A deep learning recommendation model

space. The sparse features are processed with embedding
look-ups that project sparse indices to a lower dimensional
space. As in Figure 2, the resulting embeddings are combined
with the dense features to produce higher order interactions,
for example using a set of fully connected layers (FCs) or
parameter-less additive and multiplicative mixing [52].

The embedding tables can easily contain billions of param-
eters, while FCs usually have a modest number of parameters.
The size of these models is often bound by the memory of
the system at hand and can easily require a memory capacity
exceeding tens of GBs.

During inference, models often have to predict event-
probabilities for multiple candidates for a single user, usu-
ally within 100s ms time constraint. These properties allow
us to leverage batching to achieve high performance in FCs.
However, the overall model’s execution tends to be memory
bandwidth bound and is dominated by the embedding lookups.
These look-ups perform a large number of mostly random ac-
cesses across table columns, but read an entire column vector
for each such random access.
Future Trends:
1. Model Exploration: recent studies explore explicitly incor-

porating time into the event-probability models [7, 71]. We
believe that such techniques will lead to better models in
the future but require more compute demand.

2. Larger Embeddings: Adding more sparse signals and in-
creasing embedding dimensions tends to improve model
quality. Therefore, we expect even larger embeddings to
be used. This will further increase the pressure on memory
and leads to systems with larger memory capacity, while
putting more focus on distributed training and inference.

2.1.2. Computer Vision
Image Classification: The ResNet architecture [26] is widely
used for image classification, but recently much larger models
based on the ResNeXt architecture [72] have shown state-
of-the-art accuracy for classification over 17K classes with
weakly supervised training [42]. During inference, the images
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Recommendation systems



Int8 quantization
• Dequantization: x = scale·(xq – offset)
• Quantization: xq= clip(round(x/scale) + offset, -128, 127)



Challenges
• Accuracy requirements
• 0.02% for recommendation systems
• 0.5% for computer vision models

• Performance optimizations



Accuracy improving techniques (1)
• Symmetric vs. Asymmetric
• preserve sparsity, no nasty handling of offsets during matmul
• slight loss of accuracy if using int8 for both weights and 

activations
• Unsigned vs. Signed
• Including 0 or not
• Channel-wise quantization

•Assign scale and offset for each channel



Accuracy improving techniques (2)
• L2 error minimization vs. Min-max
• Minimize the quantization errors for the more common 

values while allowing relatively large errors for outliers.
• Requires the activation histogram profiling offline.

• Outlier-aware quantization



FBGEMM
• Facebook high performance 

linear algebra library
• Optimized on-CPU performance 

for low precision calculations
• Supports accuracy-loss-minimizing 

techniques
• Dynamically generates matrix-

shape specific vectorized code https://code.fb.com/ml-applications/fbgemm/

FBGEMM performance for compute bound scenarios

https://code.fb.com/ml-applications/fbgemm/


Int8 quantization for CV models
• OCR text recognition using Rosetta
• 2x speedups using int8 and int32 acc.
• 2x speedups using int8 and int16 acc.

• Outlier-aware quantization
• Model adjustments

• Int8 quantization workflow
• Activation histogram profiling, graph transformation, kernel 

optimization, quantization space exploration

Rosetta: Large scale system for text 
detection and recognition in images

Fedor Borisyuk et al.
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Model co-design
• Int8 quantization on Rosetta

• + 0.5% accuracy in both fp32 and 
int8 models

• Int8 quantization on 
recommendation systems
• Wider FC layers to compensate 

for accuracy loss

Relu

ShuffleNet
https://arxiv.org/pdf/1707.01083.pdf

https://arxiv.org/pdf/1707.01083.pdf
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We can plot a horizontal line showing peak floating-point 

performance of the computer. Obviously, the actual floating-point 

performance of a floating-point kernel can be no higher than the 

horizontal line, since that is a hardware limit. 

How could we plot the peak memory performance? Since X-axis 

is GFlops per byte and the Y-axis is GFlops per second, bytes per 

second—which equals (GFlops/second)/(GFlops/byte)—is just a 

line at a 45-degree angle in this figure. Hence, we can plot a 

second line that gives the maximum floating-point performance 

that the memory system of that computer can support for a given 

operational intensity. This formula drives the two performance 

limits in the graph in Figure 1a: 

Attainable GFlops/sec = Min(Peak Floating Point Performance, 

Peak Memory Bandwidth x Operational Intensity) 

These two lines intersect at the point of peak computational 

performance and peak memory bandwidth. Note that these limits 

are created once per multicore computer, not once per kernel. 

For a given kernel, we can find a point on the X-axis based on its 

operational intensity. If we draw a (pink dashed) vertical line 

through that point, the performance of the kernel on that computer 

must lie somewhere along that line.  

The horizontal and diagonal lines give this bound model its name. 

The Roofline sets an upper bound on performance of a kernel 

depending on its operational intensity. If we think of operational 

intensity as a column that hits the roof, either it hits the flat part of 

the roof, which means performance is compute bound, or it hits 

the slanted part of the roof, which means performance is 

ultimately memory bound. In Figure 1a, a kernel with operational 

intensity 2 is compute bound and a kernel with operational 

intensity 1 is memory bound. Given a Roofline, you can use it 

repeatedly on different kernels, since the Roofline doesn’t vary. 

Note that the ridge point, where the diagonal and horizontal roofs 

meet, offers an insight into the overall performance of the 

computer. The x-coordinate of the ridge point is the minimum 

operational intensity required to achieve maximum performance. 

If the ridge point is far to the right, then only kernels with very 

high operational intensity can achieve the maximum performance 

of that computer. If it is far to the left, then almost any kernel can 

potentially hit the maximum performance. As we shall see 

(Section 6.3.5), the ridge point suggests the level of difficulty for 

programmers and compiler writers to achieve peak performance.  

To illustrate, let’s compare the Opteron X2 with two cores in 

Figure 1a to its successor, the Opteron X4 with four cores. To 

simplify board design, they share the same socket. Hence, they 

have the same DRAM channels and can thus have the same peak 

memory bandwidth, although the prefetching is better in the X4. 

In addition to doubling the number of cores, the X4 also has twice 

the peak floating-point performance per core: X4 cores can issue 

two floating-point SSE2 instructions per clock cycle while X2 

cores can issue two every other clock. As the clock rate is slightly 

faster—2.2 GHz for X2 versus 2.3 GHz for X4—the X4 has 

slightly more than four times the peak floating-point performance 

of the X2 with the same memory bandwidth.  

Figure 1b compares the Roofline models for both systems. As 

expected, the ridge point shifts right from 1.0 in the Opteron X2 to 

4.4 in the Opteron X4. Hence, to see a performance gain in the 

X4, kernels need an operational intensity higher than 1.  

 

Figure 1. Roofline Model for (a) AMD Opteron X2 on left  

and (b) Opteron X2 vs. Opteron X4 on right. 

4. ADDING CEILINGS TO THE MODEL 
The Roofline model gives an upper bound to performance. 

Suppose your program is performing far below its Roofline. What 

optimizations should you perform, and in what order? Another 

advantage of bound and bottleneck analysis is [20]  

“a number of alternatives can be treated together, with a single 

bounding analysis providing useful information about them all.”  

We leverage this insight to add multiple ceilings to the Roofline 

model to guide which optimizations to perform, which are similar 

to the guidelines that loop balance gives the compiler. We can 

think of each of these optimizations as a “performance ceiling” 

below the appropriate Roofline, meaning that you cannot break 

through a ceiling without performing the associated optimization. 

For example, to reduce computational bottlenecks on the Opteron 

X2, two optimizations can help almost any kernel:  

1. Improve instruction level parallelism (ILP) and apply SIMD. 

For superscalar architectures, the highest performance comes 

when fetching, executing, and committing the maximum 

number of instructions per clock cycle. The goal here is to 

improve the code from the compiler to increase ILP. The 

highest performance comes from completely covering the 

functional unit latency. One way is by unrolling loops. For 

the x86-based architectures, another way is using floating-

point SIMD instructions whenever possible, since an SIMD 

instruction operates on pairs of adjacent operands. 

2. Balance floating-point operation mix. The best performance 

requires that a significant fraction of the instruction mix be 

floating-point operations (see Section 7). Peak floating-point 

performance typically also requires an equal number of 

simultaneous floating-point additions and multiplications, 

since many computers have multiply-add instructions or 

because they have an equal number of adders and multipliers.  

 To reduce memory bottlenecks, three optimizations can help: 

3. Restructure loops for unit stride accesses. Optimizing for 

unit stride memory accesses engages hardware prefetching, 

which significantly increases memory bandwidth.  

4. Ensure memory affinity. Most microprocessors today include 

a memory controller on the same chip with the processors. If 

• Low-precision computing can 
achieve 2x ~ 4x performance 
improvements on today’s hardware

• How to meet the fast growing AI 
demand for tomorrow? 



AI Inference Hardware

Future of Computing, John Hennessey
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Technology, energy and Dennard scaling Inference ASIC Hardware

https://web.stanford.edu/~hennessy/Future%20of%20Computing.pdf


AI Inference Hardware
• Facebook designs its own hardware since 2010
• All designs released through open compute!
• Facebook is partnering with HW vendors to build inference 

ASIC
• Done via co-design with FB workloads in mind
• Simulate performance with production models
• Advise the quantization support from hardware
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