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Overview

● Motivation
● Background
● Neural Code Fusion
● Experimental Results
● Conclusion
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Motivation
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2% Performance/Year is the New Normal

4Source: Parthasarathy Ranganathan, More Moore: Thinking Outside the (Server) Box
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● Dynamic speculative execution
○ Branch prediction, value prediction, cache replacement, 

prefetching...
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● Dynamic speculative execution
○ Branch prediction, value prediction, cache replacement, 

prefetching...
● Static source code

○ Variable naming, finding bugs, algorithm classification, program 
synthesis…

○ Performance-related tasks: device mapping, thread coarsening, 
throughput prediction...

● Both views provide useful features

Motivation
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for (i = 0; i < k; i++)
{
}

Example: a “Simple” Case for Branch Prediction
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Highly biased

Branch history doesn’t help
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while(...){
generate k;
for (i = 0; i < k; i++)
{
}

}

Example: a “Simple” Case for Branch Prediction
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while(...){
generate k;
for (i = 0; i < k; i++)
{
}

}

Example: a “Simple” Case for Branch Prediction
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Highly biased

Branch history doesn’t help

● Jump out when “close enough”

● Predictable if we knew the relation
[Static] i and k are compared
[Dynamic] values of i and k
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Background: Graph Neural Networks
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Background: Graph Neural Networks

● Typical deep learning operates
on IID data points.
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Background: Graph Neural Networks

● What if the data points had relational information?

Battaglia et al., 2018
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Background: Graph Neural Networks

● Message passing
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Input graph
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Input graph
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Input graph
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Background: Graph Neural Networks

● Message passing
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Input graph
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Background: Graph Neural Networks

● Message passing
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Input graph

Step 0 Step 1 Step 2

GRU GRU
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Programs as Graphs Allamanis et al., 2017
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Representing Static and Dynamic Information

● Graphs are an effective representation for static code

● How do we generally represent dynamic information in a 
model?
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Neural Code Fusion
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Full System
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Assembly vs Source Code

● Highly structured
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Assembly vs Source Code

● Highly structured
● Directly relate data to program semantics
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Assembly vs Source Code

● Highly structured
● Directly relate data to program semantics
● Easy to use for architecture tasks
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Code Fusion Graph Representation
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Dynamic Tasks: Control Flow and Data Flow

● Control flow (branch prediction) 
● predict whether a branch statement will be taken or not taken.
● Set branch instruction node to be the target node.
● Binary classification
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Dynamic Tasks: Control Flow and Data Flow

● Control flow (branch prediction)
● predict whether a branch statement will be taken or not taken.
● Set branch instruction node to be the target node.
● Binary classification

● Data flow (prefetching)
● predict which address will be accessed next.
● Set src node to be the target node.
● Predict 64-bit address
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Multi-Task Representation

● Many other static/dynamic tasks can be defined on the 
graph simultaneously
○ Value prediction, indirect branch prediction, memory 

disambiguation, caching…
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Dynamic Snapshots

● Snapshots
○ The values of the set of variable nodes
○ Captured during program execution

● Used to initialize the graph neural network
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Representation Study

● Number “3” in different representations
○ Categorical: [1, 0, 0, 0]
○ Scalar:    3
○ Binary:   11
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Representation Study

● Correctly predict when to jump out
● Sample k values as training data
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for(k=0; k < n; k+=3){
for (i = 0; i < k; i++)
{
}

}
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Representation Study: 

● Results
○ Binary > scalar > categorical
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Experimental Results
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Experimental Setup

● Benchmarks
○ SPEC06 INT

● Tasks
○ Dynamic: control flow (branch prediction) and data flow (prefetching)
○ Static: algorithm classification

● Offline evaluation for both NCF and baselines
○ 70% training
○ 30% testing
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Control-flow (Branch Prediction) and Data-flow 
(Prefetching)
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Algorithm Classification

● Test the usefulness of the learned representation

● We pre-train our GNN on the control-flow task

● A simple linear SVM model

● We get 96% vs 95.3% (50M lines of LLVM IR ) using 200k lines of 

assembly with no external data sources.
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Summary

● NCF combining static and dynamic information 

○ creates useful representations

● Different from the traditional dynamic models in architecture

○ Data is usually purely dynamic

○ Model is history-based

● Enhances static models with dynamic program behavior

○ Learned representation can also transfer to a unseen static task
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Thank you!

Questions?


