Learning Execution through Neural Code Fusion

Zhan Shi, Kevin Swersky, Danny Tarlow, Parthasarathy Ranganathan, Milad Hashemi

Overview

- Motivation
- Background
- Neural Code Fusion
- Experimental Results
- Conclusion

2% Performance/Year is the New Normal

Source: Parthasarathy Ranganathan, More Moore: Thinking Outside the (Server) Box

Google ₄

- **Dynamic** speculative execution
 - Branch prediction, value prediction, cache replacement, prefetching...

- **Dynamic** speculative execution
 - Branch prediction, value prediction, cache replacement, prefetching...
- Static source code
 - Variable naming, finding bugs, algorithm classification, program synthesis...
 - Performance-related tasks: device mapping, thread coarsening, throughput prediction...

- **Dynamic** speculative execution
 - Branch prediction, value prediction, cache replacement, prefetching...
- Static source code
 - Variable naming, finding bugs, algorithm classification, program synthesis...
 - Performance-related tasks: device mapping, thread coarsening, throughput prediction...
- Both views provide useful features

Example: a "Simple" Case for Branch Prediction

for (i = 0; i < k; i++)
{

Example: a "Simple" Case for Branch Prediction Highly biased for (i = 0; i < k; i++) {

Google 2

• Typical deep learning operates on IID data points.

What if the data points had *relational* information?

Google 5

Google

• Message passing

Input graph

Message passing

• Message passing

• Message passing

• Message passing

Programs as Graphs Allamanis et al., 2017

(a) Simplified syntax graph for line 2 of Fig. 1, where blue rounded boxes are syntax nodes, black rectangular boxes syntax tokens, blue edges Child edges and double black edges NextToken edges.

(b) Data flow edges for $(x^1, y^2) = Foo()$; while $(x^3 > 0) x^4 = x^5 + y^6$ (indices added for clarity), with red dotted LastUse edges, green dashed LastWrite edges and dashdotted purple ComputedFrom edges.

Representing Static and Dynamic Information

• Graphs are an effective representation for static code

• How do we generally represent **dynamic information** in a model?

Neural Code Fusion

Full System

• Highly structured

• Highly structured

if-else			Ter	na	ry			A	ssembly	Semantics
if	(a <b)< td=""><th>i=</th><td>a<b< td=""><td>?</td><td>a</td><td>: b;</td><td>4004da:</td><td>mov</td><td>-0xc(%rbp),%eax</td><td># fetch a</td></b<></td></b)<>	i=	a <b< td=""><td>?</td><td>a</td><td>: b;</td><td>4004da:</td><td>mov</td><td>-0xc(%rbp),%eax</td><td># fetch a</td></b<>	?	a	: b;	4004da:	mov	-0xc(%rbp),%eax	# fetch a
	i = a;						4004dd:	cmp	-0x8(%rbp),%eax	# compare a and b
else							4004e0:	jge	4004ea	# jump to $i = b$ if $a \ge b$
	i = b;						4004e2:	mov	-0xc(%rbp),%eax	# fetch a
							4004e5:	mov	%eax,-0x4(%rbp)	# i = a
							4004e8:	jmp	4004f0	# jump out
							4004ea:	mov	-0x8(%rbp),%eax	# fetch b
							4004ed:	mov	%eax,-0x4(%rbp)	# i = b
							4004f0:	mov	\$0x1,%eax	

Google

- Highly structured
- Directly relate data to program semantics

if-else			Ter	nai	ry			А	ssembly	Semantics
if	(a <b)< td=""><th>i=</th><td>a<b< td=""><td>?</td><th>a</th><td>: b;</td><td>4004da:</td><td>mov</td><td>-0xc(%rbp),%eax</td><td># fetch a</td></b<></td></b)<>	i=	a <b< td=""><td>?</td><th>a</th><td>: b;</td><td>4004da:</td><td>mov</td><td>-0xc(%rbp),%eax</td><td># fetch a</td></b<>	?	a	: b;	4004da:	mov	-0xc(%rbp),%eax	# fetch a
	i = a;						4004dd:	cmp	-0x8(%rbp),%eax	# compare a and b
else							4004e0:	jge	4004ea	# jump to $i = b$ if $a \ge b$
	i = b;						4004e2:	mov	-0xc(%rbp),%eax	# fetch a
							4004e5:	mov	%eax,-0x4(%rbp)	# i = a
							4004e8:	jmp	4004f0	# jump out
							4004ea:	mov	-0x8(%rbp),%eax	# fetch b
							4004ed:	mov	%eax,-0x4(%rbp)	# i = b
							4004f0:	mov	\$0x1,%eax	

Google 7

Google

- Highly structured
- Directly relate data to program semantics
- Easy to use for architecture tasks

Google 29

Dynamic Tasks: Control Flow and Data Flow

- Control flow (branch prediction)
 - predict whether a branch statement will be taken or not taken.
 - Set branch instruction node to be the target node.
 - Binary classification

Dynamic Tasks: Control Flow and Data Flow

- Control flow (branch prediction)
 - predict whether a branch statement will be taken or not taken.
 - Set branch instruction node to be the target node.
 - Binary classification
- Data flow (prefetching)
 - predict which address will be accessed next.
 - Set src node to be the target node.
 - Predict 64-bit address

Multi-Task Representation

- Many other static/dynamic tasks can be defined on the graph simultaneously
 - Value prediction, indirect branch prediction, memory disambiguation, caching...

Dynamic Snapshots

- Snapshots
 - The values of the set of variable nodes
 - Captured during program execution
- Used to initialize the graph neural network

Representation Study

- Number "3" in different representations
 - Categorical: [1, 0, 0, 0]
 - Scalar: 3
 - Binary: 11

Representation Study

- Correctly predict when to jump out
- Sample k values as training data

Representation Study:

• Results

Google

Binary > scalar > categorical

Experimental Results

Experimental Setup

- Benchmarks
 - SPEC06 INT
- Tasks
 - Dynamic: control flow (branch prediction) and data flow (prefetching)
 - Static: algorithm classification
- Offline evaluation for both NCF and baselines
 - 70% training
 - 30% testing

Control-flow (Branch Prediction) and Data-flow (Prefetching)

Algorithm Classification

- Test the usefulness of the learned representation
- We pre-train our GNN on the control-flow task
- A simple linear SVM model
- We get 96% vs 95.3% (50M lines of LLVM IR) using 200k lines of assembly with no external data sources.

Summary

- NCF combining **static** and **dynamic** information
 - creates useful representations
- Different from the **traditional dynamic models** in architecture
 - Data is usually purely dynamic
 - Model is history-based
- Enhances **static models** with dynamic program behavior
 - Learned representation can also transfer to a unseen static task

Thank you!

Questions?

